WHY AI NEEDS MATHS AND STATS - lessons from working in a CS field

Martin Jullum Godt Hjort, Dec 5th 2023

Explainable Al (XAI)

- Understanding what black box models do
- A field largely driven by computer scientists
- Me and colleagues
 - Work in the subfield restricted to tabular data –
 i.e. regression: y = f(x1,x2,x3)
 - Try to use our statistical mindset to improve/repair the methodology in the field

SHARLEY VALUES

Shapley values

- Concept from (cooperative) game theory in the 1950s
- ► Used to distribute the total payoff to the players
 - Explicit formula for the "fair" payment to every player *j*: $\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)!}{|M|!} (v(S \cup \{j\}) - v(S))$ u(S) is the payoff with only players

v(S) is the payoff with only players in subset S

Several mathematical optimality properties

Shapley values for taxi sharing

Costs: \$3/mi

 $v(\{R, B, G\}) = (4 + 6 + 2)mi * $3 = 36 $v(\{\}) = 0

$$v(\{R\}) = 4mi * \$3 = \$12$$

$$v(\{B\}) = (5+2)mi * \$3 = \$21$$

$$v(\{G\}) = 5mi * \$3 = \$15$$

$$v(\{R, B\}) = (4+6)mi * \$3 = \$30$$

$$v(\{R, G\}) = (4+6+2)mi * \$3 = \$36$$

$$v(\{B, G\}) = (5+2)mi * \$3 = \$21$$

 $\phi_{R} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{B, G\}) \right) + \frac{1}{6} \left(v(\{R, B\}) - v(\{B\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{G\}) \right) + \frac{1}{3} \left(v(\{R\}) - v(\{\}) \right) = \14 $\phi_{B} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{R, G\}) \right) + \frac{1}{6} \left(v(\{R, B\}) - v(\{R\}) \right) + \frac{1}{6} \left(v(\{B, G\}) - v(\{G\}) \right) + \frac{1}{3} \left(v(\{B\}) - v(\{\}) \right) = \11 $\phi_{G} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{R, B\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{R\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{B\}) \right) + \frac{1}{3} \left(v(\{G\}) - v(\{\}) \right) = \11

Shapley values for prediction explanation

- Approach popularised by Lundberg & Lee (2017)
 - Players = covariates $(x_1, ..., x_M)$
 - Payoff = prediction $(f(\mathbf{x}^*))$
 - Contribution function: $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$
 - Properties

$$\phi_0 + \sum_{j=1}^M \phi_j = f(\mathbf{x}^*)$$

$$f(\mathbf{x}) \perp x_j$$
 x_i, x_j same contribution
implies $\phi_j = 0$ implies $\phi_i = \phi_j$

► Interpretation of ϕ_j : The prediction change caused by observing the value of x_j – averaged over whether the other covariates were observed or not

 $\phi_0 = E[f(\mathbf{x})]$

Two main challenges

1. The computational complexity in the Shapley formula is of size 2^{M}

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S^*) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) \mathrm{d}\mathbf{x}_{\bar{S}}$$

- Lundberg & Lee (2017)
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
 - Estimates $p(x_{\bar{s}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral

This assumes the covariates are independent!

Our contribution

<u>Dependence-aware</u> approaches to estimate

 $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$ properly

- We do this by estimating $p(x_{\bar{S}}|x_{\bar{S}} = x_{\bar{S}}^*)$ properly
- Several alternative methods
 - Gaussian distribution
 - Empirical nonparametric method
 - Empirical margins + vine copulas to estimate dependence structure
 - Conditional inference trees (ctree)
 - Variational autoencoders with arbitrary conditioning (VAEAC)
 - Direct regression on $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] \sim \mathbf{x}_S$
 - Common regression model for any v(S) using masking trick

COUNTERFACTAL

EXPLANATIONS

Example case

Automatic processing of loaning applications based on default prediction model

- Response y: Loan defaulted or not
- Covariates $x = (x_1, ..., x_p)$: Info about the applicant, salary, previous defaults, transactions history, etc
- Fit regression model f: Model trained to predict probability of default: $f(\mathbf{x}) \approx \Pr(y = \text{default}|\mathbf{x})$
- Loan approved if $f(\mathbf{x}) < c = 0.1$

CASE: Peter has features x^* , and got his loan application rejected as $f(x^*) = 0.2 > c$

Question: What can Peter do to receive a loan?

The idea

CE solution: Examples of (minimal) changes in covariates which approves the application

Criteria

Desired properties

- 1. On-manifold
- 2. Actionable
- 3. Valid
- 4. Low cost

Guidotti (2022)

Types of CE methods

Optimization based methods

► Minimize loss (wrt example e) of the type

$$\mathbf{e} \quad L_{\boldsymbol{x}^*}(\boldsymbol{e}) = \operatorname{dist}_1(f(\boldsymbol{e}), c) + \lambda \cdot \operatorname{dist}_2(\boldsymbol{x}^*, \boldsymbol{e})$$

- Often require differentiable f
- Not necessarily on-manifold
- Categorical covariates more troublesome

Heuristic search-based methods

Optimization with heuristic search strategies

Instance-based methods

Finds counterfactuals by searching for instances in a reference distribution/dataset

Our simple method: MCCE

MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations

3-step procedure to produce a counterfactual example *e*

- 1. **Model**: Model the joint distribution of mutable covariates, given the fixed covariates and *the decision*
- 2. Generate: Generate a large number K of samples from the modelled distribution with the specified fixed covariates x^{*f} and desired decision
- 3. **Post-process**: Discard the invalid samples, and choose the one "nearest" to x^*

Step 1: Model

Utilize the standard probability property:

$$p(\mathbf{X}^{m} \mid \mathbf{X}^{f}, Y') = p(X_{1}^{m} \mid \mathbf{X}^{f}, Y') \prod_{i=2}^{q} p(X_{i}^{m} \mid \mathbf{X}^{f}, Y', X_{1}^{m}, \dots, X_{i-1}^{m})$$

Step 2: Generation

ä

Step 3: Post-processing

Our contribution

MCCE

- ► Simple, yet effective
- ► Flexible
- Scalable and easy to implement
- Outperforms competing methods in terms of both accuracy and speed

TAKE HOME

L

