

Big**Insight**

A ridiculously simple approach to counterfactual explanations

Martin Jullum (jullum@nr.no, martinjullum.com)

Journal club seminar, LMU Munich, May 9th 2023

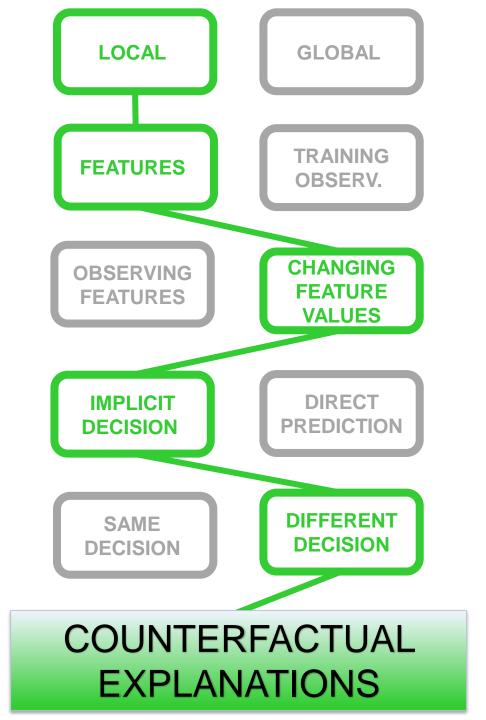
Explanation case

Automatic processing of loaning applications based on default prediction model

- Response y: Loan defaulted or not
- Features $\mathbf{x} = (x_1, ..., x_p)$: Info about the applicant, salary, previous defaults, transactions history, etc
- Predictive model f: Model trained to predict probability of default: $f(x) \approx \Pr(y = \text{default}|x)$
- ► Loan approved if f(x) < c = 0.1

CASE: Peter has features x^* , and got his loan application rejected as $f(x^*) = 0.2 > c$

Question: What can Peter do to receive a loan?



Explanation case

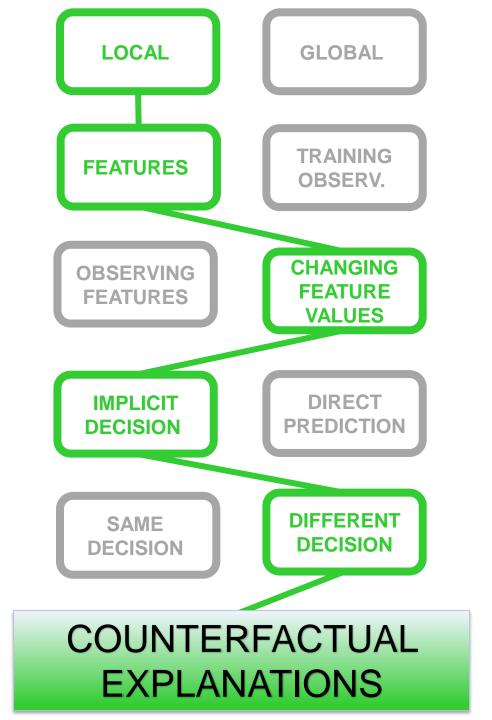
Automatic processing of loaning applications based on default prediction model

Tool for choosing XAI-method (WIP)

xai-tree.nr.no

CASE: Peter has features x^* , and got his loan application rejected as $f(x^*) = 0.2 > c$

Question: What can Peter do to receive a loan?



Explanation case

CE solution: Examples of (minimal) changes in features which approves the application

Automatic processing of loaning applications based on default prediction model

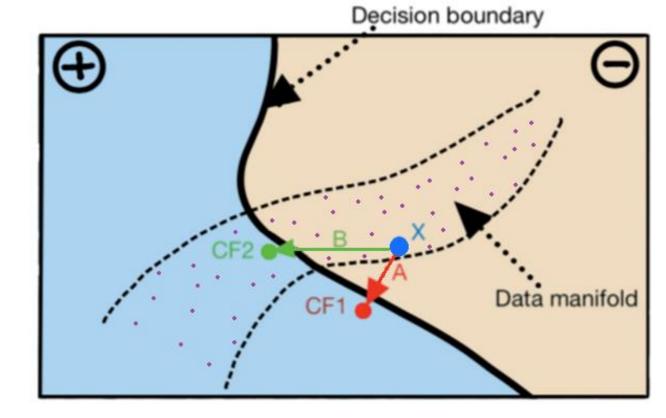


Counterfactual explanations – criteria

Criteria: e must be

- 1. On-manifold, i.e. $p(X^m = e^m | X^f = e^f) > \varepsilon$, for some $\varepsilon > 0$
- 2. Actionable, i.e. not change fixed features x^f
- 3. Valid, i.e. $f(e) \in c_{int}$
- 4. of low cost, i.e. $dist(x^*, e)$ is small

e is a CE of $f(x^*)$ Define an acceptable decision interval c_{int} Divide features into mutable x^m and fixed x^f features



Guidotti (2022)

Types of CE methods

Optimization based methods

- Minimize loss functions (wrt e) of type
 - Often require differentiable f
 - Not necessarily on-manifold
 - Categorical features more troublesome

Heuristic search-based methods

Optimization with heuristic search strategies

Instance-based methods

Finds counterfactuals by searching for instances in a reference distribution/dataset

$$L_{\boldsymbol{x}^*}(\boldsymbol{e}) = \operatorname{dist}_1(f(\boldsymbol{e}), c) + \lambda \cdot \operatorname{dist}_2(\boldsymbol{x}^*, \boldsymbol{e})$$

Our simple CE method: MCCE

MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations

3-step procedure to produce CE e of $f(x^*)$

- **Model**: Model the distribution of mutable features, given the fixed features and *the decision*
- Generate: Generate a large number K of samples from the modelled distribution with the specified fixed features x^{*f} and desired decision
- Post-process: Discard the invalid samples, and choose the one "nearest" to x^* 3.

Walk-through example: Automatic loan

	Fea				
Fixed		M	Mutable		
Age Sex		Salary	Def. last year	f(x)	Decision
30	М	\$ 3500	yes	0.24	0
28	F	\$ 8000	no	0.12	0
42	М	\$ 7500	no	0.04	1
26	F	\$ 6000	no	0.02	1
27	F	\$ 9500	yes	0.21	0
39	М	\$ 5000	no	0.09	1
28	F	\$ 4000	no	0.08	1
32	F	\$ 7300	no	0.12	0
:	:	÷	:	:	:
23	М	\$ 4300	yes	0.31	0

Predictions to explain

	Fea					
Fix	xed	M	utable			
Age	Sex	Salary	Def. last year	f(x)	Decision	
30	F	\$ 6000	yes	0.18	0	
25	М	\$ 4500	no	0.30	0	

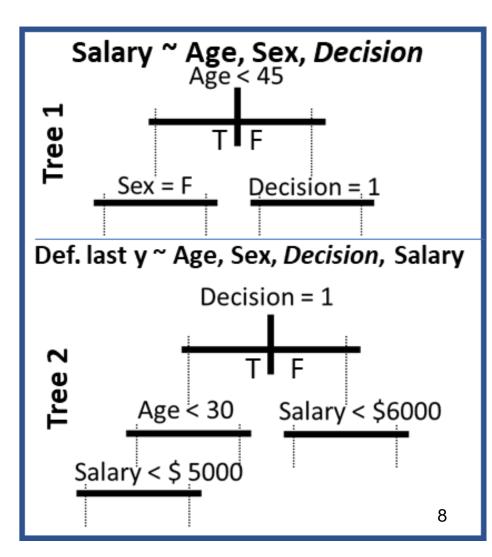
Step 1: Model

- ▶ Denote the decision by $y' = \mathbf{1}\{f(x) \in c_{int}\}$
- We utilize the general property

$$p(\mathbf{X}^m \mid \mathbf{X}^f, Y') = p(X_1^m \mid \mathbf{X}^f, Y') \prod_{i=2}^q p(X_i^m \mid \mathbf{X}^f, Y', X_1^m, \dots, X_{i-1}^m)$$

Use tree models (CART or conditional inference trees) to fit the q distributions $X_i^m \sim (X^f, Y', X_1^m, ..., X_{i-1}^m)$, and keep the observations in the end nodes

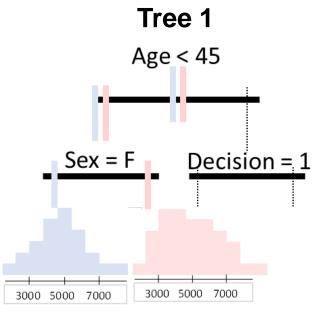
		Feat				
	Fix	xed	M	utable		
	Age	Sex	Salary	Def. last year	f(x)	Decision
	30	М	\$ 3500	yes	0.24	0
Ø	28	F	\$8000	no	0.12	0
ati	42	М	\$ 7500	no	0.04	1
data	26	F	\$ 6000	no	0.02	1
	27	F	\$ 9500	yes	0.21	0
Ĕ	39	М	\$ 5000	no	0.09	1
<u> </u>	28	F	\$ 4000	no	0.08	1
<u>a</u> :	32	F	\$ 7300	no	0.12	0
Training	:	:	:	:	:	:
	23	М	\$ 4300	yes	0.31	0

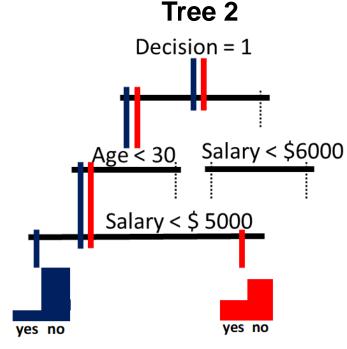


Step 2: Generation

For each prediction $f(x^*)$ we want to explain:

- Start with table D with K copies of the fixed features and y' = 1
- For each tree: i = 1, ..., q:
 - For each unique row of D, follow the tree to the end nodes and sample therein
 - Append the samples to the table D as a new column





			D	
Age	Sex	Decision	Salary	Def. last year
30	F	1	-	-
30	F	1	-	-
30	F	1	-	-
30	F	1	-	-
25	М	1	-	-
25	М	1	-	-
25	М	1	_	-
25	М	1	-	-
	30 30 30 30 25 25 25	30 F 30 F 30 F 30 F 25 M 25 M	30 F 1 30 F 1 30 F 1 30 F 1 25 M 1 25 M 1 25 M 1	30 F 1 - 30 F 1 - 30 F 1 - 25 M 1 - 25 M 1 - 25 M 1 -

Updating D Sex Decision Salary D

Age	Sex	Decision	Salary	Def. last year
30	F	1	\$ 4500	-
30	F	1	\$ 6000	-
30	F	1	\$ 7500	-
30	F	1	\$ 3800	-
25	М	1	\$ 6000	-
25	М	1	\$ 4800	-
25	М	1	\$ 5300	-
25	М	1	\$ 4600	_

Updating *D*

Salary	Def. last year
\$ 4500	no
\$ 6000	no
\$ 7500	yes
\$ 3800	no
\$ 6000	yes
\$ 4800	no
\$ 5300	no
\$ 4600	no
	\$ 4500 \$ 6000 \$ 7500 \$ 3800 \$ 6000 \$ 4800 \$ 5300

Step3: Post-process

Filter the data set **D** to obey our four criteria

- ▶ 1 & 2 already satisfied
- Most samples satisfies 3, remove the others
- \triangleright Choose the sample closest to x^* as follows:
 - Per explainee, restrict to smallest number of features being changed (L0)
 - Amongst the remaining, chose the one minimizing the Gower distance

Gower distance =
$$\frac{1}{p} \sum_{j=1}^{p} \delta_G(d_j, x_j) \in [0, 1],$$

$$\delta_G(d_j, x_j) = \begin{cases} \frac{1}{R_j} \mid d_j - x_j \mid & \text{if } x_j \text{ is numerical,} \\ \mathbb{1}_{d_j \neq x_j} & & \text{if } x_j \text{ is categorical,} \end{cases}$$

Recall

Criteria: e must be

- 1. On-manifold, i.e. $p(X^m = e^m | X^f = e^f) > \varepsilon$, for some $\varepsilon > 0$
- 2. Actionable, i.e. not change fixed features x^f
- 3. Valid, i.e. $f(e) \in c_{int}$
- 4. of low cost, i.e. $dist(x^*, e)$ is small

Age	Sex	Decision	Salary	Def. last year	f(x)	valid	LO	Gower
-30-	F	1	\$ 4500	no	0.08	1	2	0.6
30	F	1	\$ 6000	no	0.07	1	1	0.5
-30		1	\$ 7500	V-C	0.09	- 1	1	0.8
30			\$ 7300	yes	0.03		2	0.7
25	M	1	\$ 6000	yes	0.05	1	2	0.8
25	М	1	\$ 4800	no	0.08	1	1	0.3
25	i√i	1	\$ 5300	по	0.05	1	1	0.5
25	M	1	\$ 4600	по	0.12	0	1	0.1

Benchmarks – setup

- Real data sets
- ▶ Generate CE to explain predictions from a test set
 - Use MCCE + 6 other on-manifold methods
- Compare the methods in terms of performance measures
 - L0, Gower, feasibility (on-manifoldness), actionability, validity, computation time

Benchmarks – Give me some credit

- Binary classification of financial distress or not
- ▶ 10 cont features
- ► 150 000 obs
- ▶ Use 3-layer ANN for modelling

Data set:	Give Me	Some	Credit, $n_{\text{test}} =$	= 1000,	K = 1000
-----------	---------	------	-----------------------------	---------	----------

Method	$L_0\downarrow$	Gower↓	feasibility↓	actionability↓	validity †	$t(s)$ all \downarrow
C-CHVAE	8.98 (0.13)	0.95 (0.28)	0.26 (0.04)	0.00 (0.00)	1.00	151.81
CEM-VAE	8.62 (1.08)	$1.61 \ (0.57)$	$0.27 \ (0.07)$	0.96 (0.19)	0.93	813.99
CLUE	$10.00 \ (0.04)$	$1.41 \ (0.32)$	$0.37 \ (0.06)$	1.00 (0.03)	1.00	3600.35
CRUDS	9.00(0.00)	$1.68 \ (0.36)$	$0.42 \ (0.02)$	0.00 (0.00)	1.00	11823.25
FACE	8.59(1.08)	1.66 (0.53)	$0.32\ (0.09)$	$0.98 \ (0.16)$	1.00	32308.78
REViSE	8.36 (1.06)	$0.70 \ (0.27)$	$0.32 \ (0.05)$	0.00 (0.00)	1.00	8286.04
MCCE	$4.52\ (0.97)$	0.61 (0.32)	$0.27 \ (0.07)$	0.00 (0.00)	1.00	32.18

Benchmarks - Adult

- ▶ Binary classification of income >= \$50 000
- ► 4 cont + 8 cat features
- ▶ 49 000 obs
- Use 3-layer ANN for modelling

Data set: Adult, $n_{\text{test}} = 1000, K = 1000$						
Method	$L_0\downarrow$	Gower↓	feasibility↓	actionability↓	validity †	t(s) all↓
C-CHVAE	7.76 (1.02)	3.13 (1.10)	0.27 (0.17)	0.00 (0.00)	1.00	140.33
CEM-VAE	6.92(2.06)	3.18(1.65)	$0.21\ (0.15)$	1.38 (0.59)	0.49	768.76
CLUE	$13.00 \ (0.00)$	7.83 (0.31)	0.93 (0.12)	1.36 (0.48)	1.00	3578.00
CRUDS	7.87 (1.08)	4.55 (1.09)	$1.10 \ (0.16)$	0.00 (0.00)	1.00	15013.56
FACE	6.98 (1.56)	3.3(1.50)	$0.24 \ (0.20)$	1.42 (0.51)	1.00	10280.69
REViSE	5.91(1.23)	1.62(1.23)	$0.46 \ (0.33)$	0.00 (0.00)	1.00	11806.86
MCCE	2.70 (0.73)	$0.56 \ (0.45)$	$0.32 \ (0.25)$	0.00 (0.00)	1.00	24.97

Conclusion

MCCE

- Models both features and the decision to ensure on-manifold and valid CE
- Conditional sampling guarantees to not violate fixed features
- Relies on trees, which handle continuous/discrete/categorical features
- ▶ Breaks up tasks into 3 steps each step can easily be altered to specific needs
- Scalable
- Easy to implement
- Outperforms competing methods in terms of both accuracy and speed

Preprint on arXiv: arxiv.org/abs/2111.09790
R-package, with Python wrapper at github.com/NorskRegnesentral/mcceR