

A ridiculously simple approach to counterfactual explanations

Martin Jullum (jullum@nr.no)

NordicXAI, Trondheim, March 29th 2023

Explanation case

Automatic processing of loaning applications based on default prediction model

- Response y: Loan defaulted or not
- Features x = (x₁, ..., x_p): Info about the applicant, salary, previous defaults, transactions history, etc
- Predictive model f: Model trained to predict probability of default: $f(x) \approx \Pr(y = \text{default}|x)$
- Loan approved if $f(\mathbf{x}) < c = 0.1$

CASE: Peter has features x^* , and got his loan application rejected as $f(x^*) = 0.2 > c$

Question: What can Peter do to receive a loan?

Explanation case

Automatic processing of loaning applications based on default prediction model

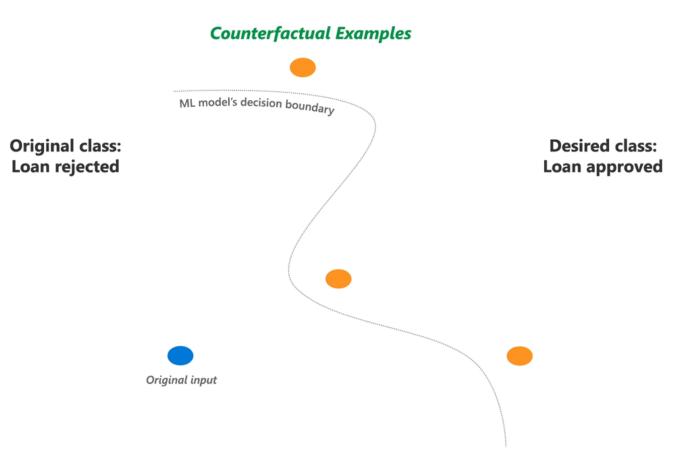
CASE: Peter has features \mathbf{x}^* , and got his loan application rejected as $f(\mathbf{x}^*) = 0.2 > c$

Question: What can Peter do to receive a loan?

Explanation case

CE solution: Examples of (minimal) changes in features which approves the application

Automatic processing of loaning applications based on default prediction model



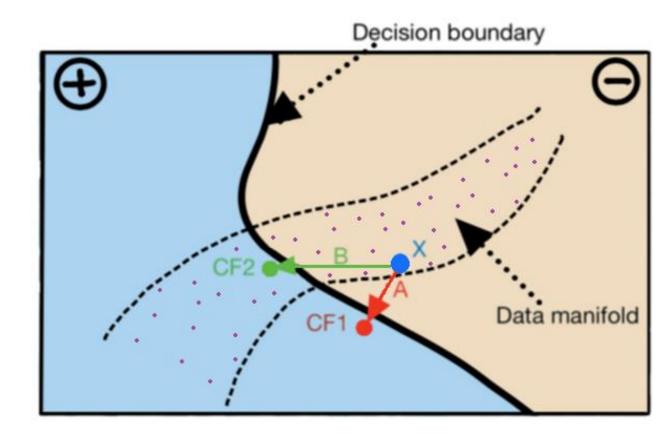
Counterfactual explanations – criteria

Criteria: e must be

- 1. On-manifold, i.e. $p(X^m = e^m | X^f = e^f) > \varepsilon$, for some $\varepsilon > 0$
- 2. Actionable, i.e. not change fixed features x^{f}
- 3. Valid, i.e. $f(e) \in c_{int}$
- 4. of low cost, i.e. $dist(x^*, e)$ is small

e is a CE of $f(x^*)$ Define an acceptable decision i

Define an acceptable decision interval c_{int} Divide features into mutable x^m and fixed x^f features



Types of CE methods

Optimization based methods

- ► Minimize loss functions (wrt **e**) of type
 - Often require differentiable f
 - Not necessarily on-manifold
 - Categorical features more troublesome

Heuristic search-based methods

Optimization with heuristic search strategies

Instance-based methods

Finds counterfactuals by searching for instances in a reference distribution/dataset

$$L_{\boldsymbol{x}^*}(\boldsymbol{e}) = \operatorname{dist}_1(f(\boldsymbol{e}), c) + \lambda \cdot \operatorname{dist}_2(\boldsymbol{x}^*, \boldsymbol{e})$$

Our simple CE method: MCCE

MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations

3-step procedure to produce CE e of $f(x^*)$

- 1. Model: Model the distribution of mutable features, given the fixed features and *the decision*
- 2. Generate: Generate a large number K of samples from the modelled distribution with the specified fixed features x^{*f} and desired decision
- 3. **Post-process**: Discard the invalid samples, and choose the one "nearest" to x^*

		Fea				
	F	ixed	М	utable		
	Age	Sex	Salary	Def. last year	f(x)	Decision
	30	М	\$ 3500	yes	0.24	0
ala	28	F	\$ 8000	no	0.12	0
	42	М	\$ 7500	no	0.04	1
כ	26	F	\$ 6000	no	0.02	1
ע	27	F	\$ 9500	yes	0.21	0
	39	М	\$ 5000	no	0.09	1
-	28	F	\$ 4000	no	0.08	1
	32	F	\$ 7300	no	0.12	0
-	:	:	:	:	:	:
	23	М	\$ 4300	yes	0.31	0

Walk-through example: Automatic loan

Predictions to explain

	Fea	itures			
Fi	xed	Μ	utable		
Age	Age Sex		Salary Def. last year		Decision
30	F	\$ 6000	yes	0.18	0
25	М	\$ 4500	no	0.30	0

7

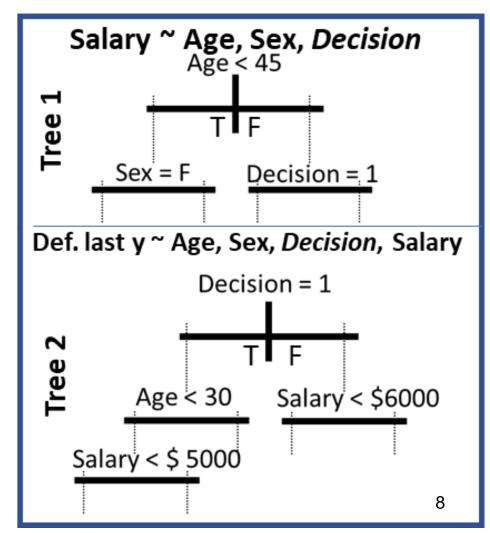
Step 1: Model

- Denote the decision by $y' = \mathbf{1}{f(\mathbf{x}) \in c_{int}}$
- We utilize the general property

$$p(\mathbf{X}^m \mid \mathbf{X}^f, Y') = p(X_1^m \mid \mathbf{X}^f, Y') \prod_{i=2}^q p(X_i^m \mid \mathbf{X}^f, Y', X_1^m, \dots, X_{i-1}^m)$$

• Use tree models (CART or conditional inference trees) to fit the q distributions $X_i^m \sim (X^f, Y', X_1^m, \dots, X_{i-1}^m)$, and keep the observations in the end nodes

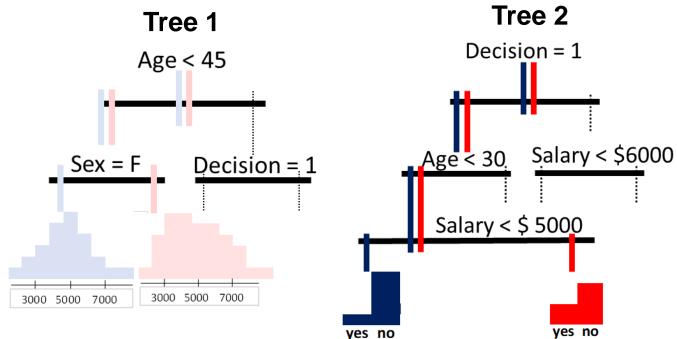
		Feat				
	Fi	xed	Μ	utable		
	Age	Sex	Salary	Def. last year	f(x)	Decision
	30	М	\$3500	yes	0.24	0
σ	28	F	\$8000	no	0.12	0
data	42	М	\$7500	no	0.04	1
ő	26	F	\$ 6000	no	0.02	1
	27	F	\$9500	yes	0.21	0
č	39	М	\$ 5000	no	0.09	1
Ē	28	F	\$4000	no	0.08	1
a.	32	F	\$7300	no	0.12	0
Training	:	:	:	:	:	:
	23	М	\$ 4300	yes	0.31	0



Step 2: Generation

For each prediction $f(x^*)$ we want to explain:

- Start with table *D* with K copies of the fixed features and y' = 1
- For each tree: i = 1, ..., q:
 - For each unique row of *D*, follow the tree to the end nodes and sample therein
 - Append the samples to the table *D* as a new column



		D						
	Age	Sex	Decision	Salary	Def. last year			
ĺ	30	F	1	-	-			
	30	F	1	-	-			
r)	30	F	1	-	-			
l	30	F	1	-	-			
	25	М	1	-	-			
	25	М	1	-	-			
	25	М	1	-	-			
	25	М	1	-	-			

Updating D

		•	•	
Age	Sex	Decision	Salary	Def. last year
30	F	1	\$ 4500	-
30	F	1	\$ 6000	-
30	F	1	\$ 7500	-
30	F	1	\$ 3800	-
25	М	1	\$ 6000	-
25	М	1	\$ 4800	-
25	М	1	\$ 5300	-
25	М	1	\$ 4600	-

Updating D

Age	Sex	Decision	Salary	Def. last year
30	F	1	\$ 4500	no
30	F	1	\$ 6000	no
30	F	1	\$ 7500	yes
30	F	1	\$ 3800	no
25	М	1	\$ 6000	yes
25	М	1	\$ 4800	no
25	М	1	\$ 5300	no
25	М	1	\$ 4600	no

Step3: Post-process

Filter the data set **D** to obey our four criteria

- ▶ 1 & 2 already satisfied
- ► Most samples satisfies 3, remove the others
- Choose the sample closest to x^* as follows:
 - Per explainee, restrict to smallest number of features being changed (L0)
 - Amongst the remaining, chose the one minimizing the Gower distance

Gower distance =
$$\frac{1}{p} \sum_{j=1}^{p} \delta_G(d_j, x_j) \in [0, 1],$$

$$\delta_G(d_j, x_j) = \begin{cases} \frac{1}{R_j} \mid d_j - x_j \mid & \text{if } x_j \text{ is numerical,} \\ \mathbb{1}_{d_j \neq x_j} & & \text{if } x_j \text{ is categorical,} \end{cases}$$

Recall

Criteria: e must be

- 1. On-manifold, i.e. $p(X^m = e^m | X^f = e^f) > \varepsilon$, for some $\varepsilon > 0$
- 2. Actionable, i.e. not change fixed features x^{f}
- 3. Valid, i.e. $f(e) \in c_{int}$
- 4. of low cost, i.e. $dist(x^*, e)$ is small

Age	Sex	Decision	Salary	Def. last year	f(x)	valid	LO	Gower
		1	\$ 4500	no	0.08	1	2	0.6
30	F	1	\$ 6000	no	0.07	1	1	0.5
-30-		1	\$ 7500	yes	0.09	1	- 1	0.8
- 30			\$ 3800	10	0.07	1	2	0.7
25		' 1	¢ 6000	Voc	0.05		2	0.8
25	M	1	\$ 4800	no	0.08	1	1	0.3
-25	ivi	1	\$ 5300	no	0.05	1		0.5
-25	M	1	\$ 4600	по	0.12	0	1	0.1

Benchmarks – setup

- Real data sets
- Generate CE to explain predictions from a test set
 - Use MCCE + 6 other on-manifold methods
- Compare the methods in terms of performance measures
 - L0, Gower, feasibility (on-manifoldness), actionability, validity, computation time

Benchmarks – Give me some credit

- Binary classification of financial distress or not
- 10 cont features
- ▶ 150 000 obs
- Use 3-layer ANN for modelling

Method	$L_0\downarrow$	Gower↓	feasibility↓	actionability↓	validity †	$t(s) all \downarrow$
C-CHVAE	8.98(0.13)	0.95~(0.28)	0.26 (0.04)	0.00 (0.00)	1.00	151.81
CEM-VAE	8.62(1.08)	1.61 (0.57)	$0.27\;(0.07)$	$0.96\ (0.19)$	0.93	813.99
CLUE	$10.00\ (0.04)$	$1.41 \ (0.32)$	$0.37\ (0.06)$	$1.00\ (0.03)$	1.00	3600.35
CRUDS	9.00(0.00)	$1.68\ (0.36)$	$0.42\ (0.02)$	0.00 (0.00)	1.00	11823.25
FACE	8.59(1.08)	$1.66 \ (0.53)$	0.32 (0.09)	0.98~(0.16)	1.00	32308.78
REViSE	8.36(1.06)	0.70 (0.27)	0.32 (0.05)	0.00 (0.00)	1.00	8286.04
MCCE	4.52 (0.97)	0.61 (0.32)	$0.27\ (0.07)$	0.00 (0.00)	1.00	32.18

Data set: Give Me Some Credit, $n_{\text{test}} = 1000, K = 1000$

Benchmarks – Adult

- ► Binary classification of income >= \$50 000
- ► 4 cont + 8 cat features
- ▶ 49 000 obs
- ► Use 3-layer ANN for modelling

	Data set: Adult, $n_{\text{test}} = 1000, K = 1000$							
Method	$L_0\downarrow$	Gower↓	$feasibility \downarrow$	actionability	validity \uparrow	$t(s) all \downarrow$		
C-CHVAE	7.76(1.02)	3.13(1.10)	$0.27 \ (0.17)$	0.00 (0.00)	1.00	140.33		
CEM-VAE	6.92 (2.06)	3.18(1.65)	0.21 (0.15)	$1.38 \ (0.59)$	0.49	768.76		
CLUE	13.00 (0.00)	$7.83\ (0.31)$	$0.93\ (0.12)$	1.36(0.48)	1.00	3578.00		
CRUDS	$7.87 \ (1.08)$	4.55(1.09)	$1.10\ (0.16)$	0.00 (0.00)	1.00	15013.56		
FACE	6.98(1.56)	$3.3\ (1.50)$	0.24 (0.20)	$1.42 \ (0.51)$	1.00	10280.69		
REViSE	$5.91 \ (1.23)$	1.62(1.23)	$0.46\ (0.33)$	0.00 (0.00)	1.00	11806.86		
MCCE	2.70 (0.73)	0.56 (0.45)	$0.32 \ (0.25)$	0.00 (0.00)	1.00	24.97		

13

Conclusion

MCCE

- Models both features and the decision to ensure on-manifold and valid CE
- Conditional sampling guarantees to not violate fixed features
- Relies on trees, which handle continuous/discrete/categorical features
- ▶ Breaks up tasks into 3 steps each step can easily be altered to specific needs
- ► Scalable
- Easy to implement
- Outperforms competing methods in terms of both accuracy and speed

Preprint on arXiv: <u>arxiv.org/abs/2111.09790</u> R-package, with Python wrapper at <u>github.com/NorskRegnesentral/mcceR</u>