

MCCE

Monte Carlo sampling of valid and realistic counterfactual explanations

Martin Jullum (jullum@nr.no)

Internseminar SAMBA 09.03.23

Prediction explanation

- ► Assume a model $f(x) \in \mathbb{R}$ that predicts some unknown outcome based on a set of features $x = (x_1, ..., x_M)$
- We apply the predictive model for a specific input $x = x^*$, reaching a certain prediction $f(x^*)$
- Individual prediction explanation
 - Want to understand how the different features, or types of features affect this specific prediction value $f(x^*)$
 - I.e. explain the predicted outcome in terms of the input $x = x^*$ (local explanation)

- ► Frameworks...
 - LIME
 - Anchors

- Shapley values
- PDP/ICE

- PredDiff
- Counterfactual explanations (CE) 2

Counterfactual explanations – by example

Default prediction model as a basis for automatic processing of loaning applications

- Response y: Loan defaulted or not
- Features $x = (x_1, ..., x_M)$: Info about the applicant, income, other loans, previous defaults, transactions history
- Predictive model f: Model trained to predict probability of default: $f(x) \approx \Pr(y = \text{default}|x)$

• Loan approved if
$$f(\mathbf{x}) < c = 0.1$$

CASE: Peter has features x^* , and got his loan application rejected as $f(x^*) = 0.3 > c$

Question: What can Peter do to receive a loan?

CE solution: Examples of (minimal) changes in features which approves the application

Counterfactual explanations – criteria

 \boldsymbol{e} is a counterfactual explanation of $f(\boldsymbol{x}^*)$

- Criterion 1: e is on-manifold, i.e., $p(\mathbf{X}^m = e^m \mid \mathbf{X}^f = e^f) > \epsilon$, for some $\epsilon > 0$;
- Criterion 2: *e* is *actionable*, i.e., does not violate any of the fixed features;
- Criterion 3: e is valid, i.e., $f(e) \ge c$, for the chosen cutoff c;
- Criterion 4: e is *low cost*, i.e., close to the factual, x^*

We measure "cost" by

- 1. # features changed
- 2. Gower distance

Gower distance =
$$\frac{1}{p} \sum_{j=1}^{p} \delta_G(d_j, x_j) \in [0, 1],$$

$$\delta_G(d_j, x_j) = \begin{cases} \frac{1}{R_j} \mid d_j - x_j \mid & \text{if } x_j \text{ is numerical,} \\ \mathbb{1}_{d_j \neq x_j} & & \text{if } x_j \text{ is categorical,} \end{cases}$$

Existing CE methods

Optimization based methods

- ► Minimize loss functions (wrt **e**) of type
 - Often require differentiable f
 - Not necessarily on-manifold
 - Categorical features more troublesome

Heuristic search-based methods

Optimization with heuristic search strategies

Instance-based methods

Finds counterfactuals by searching for instances in a reference distribution/dataset

$$L_{\boldsymbol{x}^*}(\boldsymbol{e}) = \operatorname{dist}_1(f(\boldsymbol{e}), c) + \lambda \cdot \operatorname{dist}_2(\boldsymbol{x}^*, \boldsymbol{e})$$

MCCE – the method

A 3-step procedure

- 1. Model the distribution of mutable features, given the immutable features and the decision
- 2. Generate a large number of samples from the modelled distribution with the specified fixed features x^{*f}
- 3. Discard the invalid samples, and choose the one "nearest" to x^*

MCCE – step 1: Model

We utilize

$$p(\mathbf{X}^m \mid \mathbf{X}^f, Y') = p(X_1^m \mid \mathbf{X}^f, Y') \prod_{i=2}^q p(X_i^m \mid \mathbf{X}^f, Y', X_1^m, \dots, X_{i-1}^m)$$

► Then fit q - 1 decision trees to X^m_i ~ (X^f, Y', X^m₁, ..., X^m_{i-1}), i = 2, ..., q, using CART or Conditional Inference Trees (ctree), where the observations in the end nodes are stored

MCCE – step 2: Generation

To generate one sample from $X^m | X^f = x^{*f}, Y' = 1$, we:

- 1. Follow x^{*f} down the first tree and make one sample \tilde{x}_1^m from the observations in the end node
- 2. For i = 2, ..., q:
 - Follow x^{*f} , \tilde{x}_1^m , ..., \tilde{x}_i^m down the *i*-th tree, and make one sample \tilde{x}_1^m from the observations in the end node

Repeat the procedure K times do obtain a synthetic dataset **D** with K samples

MCCE – step 3: Post-processing

Filter the data set **D** to obey our four criteria

- \boldsymbol{e} is a counterfactual explanation of $f(\boldsymbol{x}^*)$
- Criterion 1: e is on-manifold, i.e., $p(\mathbf{X}^m = e^m | \mathbf{X}^f = e^f) > \epsilon$, for some $\epsilon > 0$;
- Criterion 2: *e* is *actionable*, i.e., does not violate any of the fixed features;
- Criterion 3: e is valid, i.e., $f(e) \ge c$, for the chosen cutoff c;
- Criterion 4: e is *low cost*, i.e., close to the factual, x^* .
- C1 & C2 already satisfied
- ▶ Most samples satisfies C3, remove the others
- Choose the sample closest to x^* . We do this by
 - Determine the smallest number of samples being changed, and remove those with more changes (L0)
 - Amongst the remaining, chose the one minimizing the Gower distance (L1)

Step 3: Post-processing

Age	Sex	Job	House	Saving	Y	LO	L2
22	F	Unskil.	Own	Little	0		
22	F	Skilled	own	rich	0	5	2.67
22	F	Unskil.	rent	little	1	5	2.19
22	F	Skilled	own	rich	1	5	2
22	F	Unskil.	rent	little	1	3	0.74
22	F	Unempl.	rent	little	0	7	3.22
22	F	Skilled	rent	little	0	5	2.72
22	F	Skilled	rent	moderate	1	6	1

Counterfactual is chosen as row(s) with smallest L0/L1 and Y=1.

Experiments – setup

- Real data sets
- Generate CE to explain predictions from a test set
 - Use MCCE + 6 other on-manifold methods
- Compare the methods in terms of performance measures
 - L0, L1, feasibility, violation, success, computation time

feasibility =
$$\sum_{i=1}^{k} w^{[i]} \frac{1}{p} \sum_{j=1}^{p} \operatorname{dist}(e_j, x_j^{[i]})$$

Experiments – Give me some credit

- Binary classification of financial distress or not
- 10 cont features
- ▶ 150 000 obs
- Use 3-layer ANN for modelling

Method	$L_0\downarrow$	$L_1\downarrow$	$feasibility \downarrow$	$violation \downarrow$	$success\uparrow$	$N_{\rm CE}\uparrow$	$t(s) all \downarrow$
C-CHVAE	8.98(0.13)	$0.95\ (0.28)$	0.26 (0.04)	0.00 (0.00)	1.00	1000	151.81
CEM-VAE	$8.62\ (1.08)$	1.61 (0.57)	$0.27\;(0.07)$	$0.96\ (0.19)$	0.93	1000	813.99
CLUE	$10.00\ (0.04)$	1.41 (0.32)	$0.37\ (0.06)$	$1.00\ (0.03)$	1.00	1000	3600.35
CRUDS	9.00~(0.00)	$1.68\ (0.36)$	$0.42\ (0.02)$	0.00 (0.00)	1.00	1000	11823.25
FACE	$8.59\ (1.08)$	$1.66\ (0.53)$	$0.32\ (0.09)$	0.98~(0.16)	1.00	1000	32308.78
REViSE	$8.36\ (1.06)$	$0.70\ (0.27)$	$0.32\ (0.05)$	0.00 (0.00)	1.00	1000	8286.04
MCCE	4.52 (0.97)	0.61 (0.32)	$0.27\ (0.07)$	0.00 (0.00)	1.00	1000	32.18

Data set: Give Me Some Credit, $n_{\text{test}} = 1000, K = 1000$

Experiments – Adult

- ► Binary classification of income >= \$50 000
- ► 4 cont + 8 cat features
- ▶ 49 000 obs
- Use 3-layer ANN for modelling

Data set: Adult, $n_{\text{test}} = 1000, K = 1000$							
Method	$L_0\downarrow$	$L_1\downarrow$	$feasibility \downarrow$	$violation \downarrow$	$success\uparrow$	$N_{\rm CE}$ \uparrow	$t(s) all \downarrow$
C-CHVAE	7.76(1.02)	3.13(1.10)	$0.27 \ (0.17)$	0.00 (0.00)	1.00	1000	140.33
CEM-VAE	$6.92\ (2.06)$	$3.18\ (1.65)$	0.21 (0.15)	$1.38\ (0.59)$	0.49	1000	768.76
CLUE	$13.00\ (0.00)$	$7.83\ (0.31)$	$0.93\ (0.12)$	$1.36\ (0.48)$	1.00	1000	3578.00
CRUDS	$7.87\ (1.08)$	4.55(1.09)	$1.10 \ (0.16)$	0.00 (0.00)	1.00	1000	15013.56
FACE	$6.98\ (1.56)$	$3.3\ (1.50)$	0.24 (0.20)	$1.42 \ (0.51)$	1.00	1000	10280.69
REViSE	$5.91 \ (1.23)$	$1.62\ (1.23)$	$0.46\ (0.33)$	0.00 (0.00)	1.00	1000	11806.86
MCCE	2.70 (0.73)	0.56 (0.45)	$0.32 \ (0.25)$	0.00 (0.00)	1.00	1000	24.97

Conclusion

MCCE

- Models both features and the decision to ensure on-manifold and valid CE
- Conditional sampling guarantees to not violate immutable features
- Relies on trees which handle continuous/discrete/categorical features
- ▶ Breaks up tasks into 3 step each step can easily be altered to specific needs
- Easy to implement
- Outperforms competing methods in terms of both accuracy and speed