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► Assume a model 𝑓 𝒙 ∈ ℝ that predicts some unknown outcome based on a 

set of features 𝒙 = (𝑥1, … , 𝑥𝑀)

► We apply the predictive model for a specific input 𝒙 = 𝒙∗, reaching a certain 

prediction 𝑓 𝒙∗

► Individual prediction explanation

▪ Want to understand how the different features, or types of features affect this 

specific prediction value 𝑓 𝒙∗

▪ I.e. explain the predicted outcome in terms of the input 𝒙 = 𝒙∗ (local explanation)

► Frameworks…

▪ LIME

▪ Anchors 2

Prediction explanation

▪ Counterfactual explanations

▪ Explanation Vectors
▪ PredDiff

▪ Shapley values



► Car insurance 

▪ Response 𝑦: Insured crashed or not

▪ Features 𝒙 = (𝑥1, … , 𝑥𝑀): Data about the 

insured, his/her car and crashing history

▪ Predictive model 𝑓: Model trained to predict 

probability of crash: 𝑓 𝒙 ≈ Pr 𝑦 = 𝑦𝑒𝑠 𝒙

► Prediction explanation

▪ Why did a guy with features 𝒙∗ get a 

predicted probability of crashing equal to 

𝑓(𝒙∗)= 0.3?
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Prediction explanation – by example



► Concept from (cooperative) game theory in the 1950s

► Used to distribute the total payoff to the players

► Explicit formula for the “fair” payment to every player 𝑗:

𝜙𝑗 = 

𝑆⊆𝑀\ 𝑗

𝑆 ! 𝑀 − 𝑆 − 1 !

𝑀 !
𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

𝑣 𝑆 is the payoff with only players in subset 𝑆

► Several mathematical optimality properties

Shapley values

𝑀



Intuition behind the Shapley formula

Game with 3 players
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Guess game: Who should pay what?
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Shapley values for taxi sharing

5mi

2mi

6mi

4mi

𝑣 𝑅, 𝐵, 𝐺 = 4 + 6 + 2 𝑚𝑖 ∗ $3 = $36
𝑣 = $0

𝑣 𝑅 = 4𝑚𝑖 ∗ $3 = $12
𝑣 𝐵 = (5 + 2)𝑚𝑖 ∗ $3 = $21
𝑣 𝐺 = 5𝑚𝑖 ∗ $3 = $15
𝑣 𝑅, 𝐵 = 4 + 6 𝑚𝑖 ∗ $3 = $30
𝑣 𝑅, 𝐺 = 4 + 6 + 2 𝑚𝑖 ∗ $3 = $36
𝑣 𝐵, 𝐺 = (5 + 2)𝑚𝑖 ∗ $3 = $21

𝜙𝑅 =
1

3
𝑣 𝑅, 𝐵, 𝐺 − 𝑣 𝐵, 𝐺 +

1

6
𝑣 𝑅, 𝐵 − 𝑣 𝐵 +

1

6
𝑣 𝑅, 𝐺 − 𝑣 𝐺 +

1

3
𝑣 𝑅 − 𝑣 { } = $14

𝜙𝐵 =
1

3
𝑣 𝑅, 𝐵, 𝐺 − 𝑣 𝑅, 𝐺 +

1

6
𝑣 𝑅, 𝐵 − 𝑣 𝑅 +

1

6
𝑣 𝐵, 𝐺 − 𝑣 𝐺 +

1

3
𝑣 𝐵 − 𝑣 { } = $11

𝜙𝐺 =
1

3
𝑣 𝑅, 𝐵, 𝐺 − 𝑣 𝑅, 𝐵 +

1

6
𝑣 𝑅, 𝐺 − 𝑣 𝑅 +

1

6
𝑣 𝐵, 𝐺 − 𝑣 𝐵 +

1

3
𝑣 𝐺 − 𝑣 { } = $11

Costs: $3/mi



► Approach popularised by Lundberg & Lee (2017)

▪ Players = features (𝑥1, … , 𝑥𝑀)

▪ Payoff = prediction (𝑓(𝒙∗))

▪ Contribution function:  𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗

▪ Properties

𝜙0 + σ𝑗=1
𝑀 𝜙𝑗 = 𝑓 𝒙∗ 𝜙0 = 𝐸 𝑓 𝒙

𝑓 𝒙 𝑥𝑗 𝑥𝑖 , 𝑥𝑗 same contribution 

implies 𝜙𝑗 = 0 implies 𝜙𝑖 = 𝜙𝑗

► Interpretation of 𝜙𝑗: The prediction change caused by observing the value 

of 𝑥𝑗 – averaged over whether the other features were observed or not
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Shapley values for prediction explanation



► Consider a model 𝑓 𝒙 trained to predict a fair price

of a car insurance based on the following features 𝒙: 

▪ Owner’s age, owner’s gender, type of car, time since the

car was registered, number of accidents the last 5 years
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Example of Shapley value explanation



1. The computational complexity in the Shapley formula is of size 2𝑀

𝜙𝑗 = 

𝑆⊆𝑀\ 𝑗

𝑆 ! ( 𝑀 − 𝑆 − 1)

𝑀 !
𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

◦ Approximate solutions may be obtained by using a finite sample of subsets 𝑆
(KernelSHAP; Lundberg & Lee, 2017)

2.      Estimating the contribution function

𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆

∗)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ d𝒙 ҧ𝑆

◦ Lundberg & Lee (2017) 

· Approximates 𝑣 𝑆 ≈ ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆
∗)𝑝 𝒙 ҧ𝑆 d𝒙 ҧ𝑆, 

· Estimates 𝑝 𝒙 ҧ𝑆 using the empirical distribution of the training data 

· Monte Carlo integration to solve the integral

This assumes the features are independent!
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Two main challenges





► Requires evaluating 𝑓(𝒙 ҧ𝑆, 𝒙𝑆) at potentially unlikely or illegal combinations of 

𝒙 ҧ𝑆 and 𝒙𝑆
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Consequences of the independence assumption

► Example 1

▪ Number of transactions to   

Switzerland: 

▪ Average transaction amount 

to Switzerland:

► Example 2

▪ Age: 

▪ Marital status:

▪ Profession:

0

100 €

17

Widow

Professor
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Estimating v(S) properly
𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆

∗

= ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆
∗)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗ d𝒙 ҧ𝑆

Model-agnostic idea:

Estimate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ in a 

proper way 

+ 

Monte Carlo integration to 

approximate integral:

*Frye et. al (2020) briefly outline a VAEAC approach



1. Continuous features: Assume 𝑝(𝒙) is Gaussian 𝑁(𝝁, 𝚺)

Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

Gaussian distribution

Estimate 𝝁, 𝚺 Compute conditional means and 

covariances to obtain analytical 

expression for

𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗

Sample from that Gaussian

distribution



2. Continuous features: Assume 𝑝(𝒙) is a Gaussian copula

Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

Transform each 𝒙𝑖 to 𝑢𝑖 ∼ 𝑈[0,1]
with inverse empirical CDF

Transform each 𝑢𝑖 to 𝑣𝑖 ∼ 𝑁(0,1)

Estimate the correlation 𝚺𝐯 of (𝑣1, … , 𝑣𝑀)

Obtain analytical expression for 

the Gaussian distribution 

𝑝𝑣 𝒗 ҧ𝑆|𝒗𝑆 = 𝒗𝑆
∗

Sample from 𝑝𝑣 𝒗 ҧ𝑆|𝒗𝑆 = 𝒗𝑆
∗

+ transform back to original scale



3. Continuous features: Use an empirical (conditional) distribution which weights 

the training observations (𝒙 ҧ𝑆
𝒊 ) by their proximity to 𝒙𝑆

∗:
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Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

𝒙𝑆
∗

Mahalanobis distance to 𝒙𝑆
∗

Gaussian kernel on distance as weight

Approx 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ by the empirical

distribution with weight

on each training 

observation 𝒙 ҧ𝑆
𝒊



4. Continuous features: Estimate the dependence structure with a pair copula 

and weight the training observations using this construction
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Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

Transform each 𝒙𝑖 to 𝑢𝑖 ∼ 𝑈[0,1]
with inverse empirical CDF

Define 𝑤𝑆 𝑥𝑆, 𝑥 ҧ𝑆 = Ƹ𝑐(𝑢 ҧ𝑆, 𝑢𝑆)/ Ƹ𝑐(𝑢 ҧ𝑆) as 

the dependence structure when 

conditioning on 𝑥𝑆

For each 𝑆, estimate 

the dependence 

structure Ƹ𝑐(𝑢 ҧ𝑆, 𝑢𝑆) with 

a non-parametric pair 

copula

Approx 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ by the empirical

distribution with weight

on each training 

observation 𝒙 ҧ𝑆
𝑖



5. Mixed data: Use a multivariate decision trees as empirical distribution
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Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

For each 𝑆, fit a multivariate 

decision tree* to response 𝒚 = 𝒙 ҧ𝑆

based on 𝒙𝑆

*We use conditional inference trees

Approx 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ by the

empirical distribution of the

training observations 𝒙 ҧ𝑆
𝑖 in the

terminal node of 𝒙𝑆 = 𝒙𝑆
∗



6. Mixed data: Use an variational autoencoder with arbitrary conditioning (VAEAC) 
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Approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗

Fit a VAEAC to all conditional distributions
For each 𝑆:
1. Feed the masked encoder 

with 𝒙𝑆
∗ (masking ҧ𝑆) 

2. Generate latent variables 𝒛
3. Feed 𝒛 to the decoder and 

use it to generate samples 

𝒙 ҧ𝑆
𝑘

4. Use 𝒙 ҧ𝑆
𝑘 as samples from 

samples 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗



► Trade-offs between speed and accuracy

► Performance depends on data type and dependence structure

► General advice

▪ Continuous data: Empirical approach 

◦ Gaussian if large n_train or M

◦ Pair-copula if very heavy tails

▪ Categorical/mixed data: Ctree

▪ Future: Maybe VAEAC when properly implemented

► TreeSHAP and KernelSHAP available from the shap Python library do NOT 

give useable estimates of 𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ unless all features are close

to independent
19

When to use the different approaches



► Observational/conditional Shapley values uses 

▪ 𝑣𝐶 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆

∗)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ d𝒙 ҧ𝑆

► Interventional Shapley values uses 

▪ 𝑣𝑑𝑜 𝑆 = 𝐸 𝑓 𝒙 𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗) = ∫ 𝑓 𝒙 ҧ𝑆, 𝒙𝑆

∗ 𝑝 𝒙 ҧ𝑆|𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗ )d𝒙 ҧ𝑆 = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆

∗)𝑝 𝒙 ҧ𝑆 d𝒙 ҧ𝑆 = 𝑣𝐼 𝑆

► Chen et al. (2020) states that whether 𝑣𝐶 𝑆 or 𝑣𝐼 𝑆 is most appropriate depends on

the application

▪ 𝑣𝐶 𝑆 is most approriate if you want to learn about the actual relationship between

features and modelled response

▪ 𝑣𝐼 𝑆 is appropriate if you are debugging your model

► Heskes et al. (2020): Causal Shapley values

▪ 𝑣𝑑𝑜 𝑆 = 𝐸 𝑓 𝒙 𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗) = ∫ 𝑓 𝒙 ҧ𝑆, 𝒙𝑆

∗ 𝑝 𝒙 ҧ𝑆|𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗ )d𝒙 ҧ𝑆, 

but 𝑝 𝒙 ҧ𝑆|𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗ ) ≠ 𝑝 𝒙 ҧ𝑆 , so 𝑣𝑑𝑜 𝑆 ≠ 𝑣𝐼 𝑆 !

▪ Rather model 𝑝 𝒙 ҧ𝑆|𝑑𝑜(𝒙𝑆 = 𝒙𝑆
∗) with assumed causal ordering

▪ Requires estimate conditional distributions, but not all combinations
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Different prediction explanation games

Janzing et al. (2019)



► Independence/Interventional Shapley values (𝑣𝐼 𝑆 ) is only appropriate if

▪ all features close to independent

▪ or all dependence between features are due to a common confounder

▪ You are debugging/testing robustness of your model

► Use Causal Shapley values

▪ when you have confident knowledge about causal dependence between features

► All other cases: Use observational/conditional Shapley values

▪ Observational/conditional Shapley values ⇔Causal Shapley values if no features are

assumed to causally affect other features
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Different prediction explanation games
My viewpoint
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1. The sum in the Shapley value formula is of size 2𝑀, growing 

exponentially in the number of features

2. How can we visualize, interpret and extract knowledge from 

100s or 1000s of Shapley values?

▪ Typically: the sum of many small 𝜙𝑗 > sum of the few large ones

▪ Many highly dependent features complicates the interpretation
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Computational bottlenecks



► Fundamentally very simple approach

▪ Divide the 𝑀 features into a small number of 𝑮 disjoint groups {𝐺1, … , 𝐺𝐺}.

▪ Replace the feature subsets 𝑆 in the Shapley formula by group subsets 𝑇:

𝜙𝐺𝑖 = 

𝑇⊆𝑮\ 𝐺𝑖

𝑤 |𝑇| 𝑣 𝑇 ∪ 𝐺𝑖 − 𝑣 𝑇

▪ The scores are still Shapley values, so all mathematical properties are kept (on group level)

► What about the bottlenecks?

▪ 2𝐺 ≪ 2𝑀 ⇒ computationally tractable

▪ 𝐺 small ⇒ easy to visualize

24

groupShapley



► Crucial to group features based on the desired explanation

► Grouping based on feature dependence

▪ Highly dependent features grouped together, using e.g. a clustering method.

▪ Easier to study theoretically

▪ Often difficult to extract knowledge from in practice

► Grouping based on application/feature knowledge

▪ Group features of similar type or general category

▪ Gives directly meaningful interpretations of computed groupShapley values

▪ May perform multiple explanations with different groupings for increased understanding

► We advocate grouping based on feature knowledge in practical applications
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How to group the features?



► US Car insurance dataset

▪ 10 302 customers with records of

crash/no crash + 21 features

▪ Fit a random forest model with 500 trees

to predict crash based on the 21 features

▪ 3 feature groups based on type

◦ Track record (4 features): # claims last 5 years, # licence record points, previous 

licence revokes, time as customer

◦ Personal information (13 features): age of driver, education level, # children, job type, 

# driving children, marital status, gender, distance to work +++

◦ Car information (4 features) value of car, age of car, type of car, whether car is red
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Practical example 1: Car insurance



► Explain predictions for 3 individuals

1. 1 claim last 5 years, 3 licence record points. 

Single mother of 4 (2 driving).

Driving a SUV, 27 miles to work.

2. Got licence revoked and 10 licence record points. 

37 year old father of 2 (1 driving). 

3. 3 claims last 5 years, no licence record points

60 year old married doctor with no children, with a PhD.

Red sports car.
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Practical example 1: Car insurance



28

Practical example 2: Gene data

► Disease classification with high dimensional gene data

▪ 127 patients where 85 are diseased with either Crohn’s 

disease (CD) or Ulcerative colitis (UC) + 42 healthy controls.

▪ 4 834 genes (after pre-processing)

▪ Using 100 random individuals, we fit a Lasso penalized linear 

regression model to predict P(diseased with either CD or UC)

based on the patient’s genes

► Feature groups

▪ Use the so-called Hallmark gene set to group the features (genes) into 23 different groups 

commonly used in gene set enrichment analysis

▪ The Hallmark gene set “conveys a specific biological state or process” (Liberzon et al., 2015)
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Practical example 2: Gene data

► Compute groupShapley

values for the remaining

27 patients

► Make separate groupShapley

boxplots for UC, CD and 

controls

► Can we identify genetical

similarities and differences

for UC and CD?

► Note: Model not trained 

to separate UC and CD
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Software

► R-package shapr

▪ Computes Shapley values for any model 𝑓(𝒙) with different dependence-aware 

methods for estimating 𝑣 𝑆

▪ All functionality works for both feature-wise and group-wise Shapley values

▪ Currently undergoing heavy restructuring to allow

◦ Parallellization

◦ Reduce memory usage

◦ Causal Shapley values

◦ Improved user experience +++

◦ Python wrapper



► The Shapley value framework from game theory can be used to explain 

predictions from any ML model

► Shapley value measures the value of observing each feature

► There are two main challenges with such explanations

▪ Computational complexity -> Approximate by sample of subsets S, or explain feature 

groups instead

▪ Estimating contribution function v(S) -> Several differnet methods for different settings

► There exists other prediction explanation games: 

▪ Interventional Shapley values can be used for “debugging”

▪ Causal Shapley values is promising if you have prior causal knowledge

► You can do most (hopefully all quite soon) types of prediction explanations 

efficiently with the shapr R-package

▪ See package vignette at https://norskregnesentral.github.io/shapr/ for an intro

Take home points

https://norskregnesentral.github.io/shapr/
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