

Martin Jullum (jullum@nr.no)

Imperial College London, 03.02.2022

Prediction explanation

- ► Assume a model $f(x) \in \mathbb{R}$ that predicts some unknown outcome based on a set of features $x = (x_1, ..., x_M)$
- We apply the predictive model for a specific input $x = x^*$, reaching a certain prediction $f(x^*)$
- Individual prediction explanation
 - Want to understand how the different features, or types of features affect this specific prediction value $f(x^*)$
 - I.e. explain the predicted outcome in terms of the input $x = x^*$ (local explanation)

Frameworks…

- LIME
- Anchors

- Counterfactual explanations
- Explanation Vectors

- PredDiff
- Shapley values

Prediction explanation – by example

Car insurance

- Response y: Insured crashed or not
- Features $\mathbf{x} = (x_1, \dots, x_M)$: Data about the insured, his/her car and crashing history
- Predictive model f: Model trained to predict probability of crash: $f(\mathbf{x}) \approx \Pr(\mathbf{y} = yes | \mathbf{x})$

Prediction explanation

Why did a guy with features x* get a predicted probability of crashing equal to f(x*)= 0.3?

Shapley values

- Concept from (cooperative) game theory in the 1950s
- ► Used to distribute the total payoff to the players
 - Explicit formula for the "fair" payment to every player *j*: $\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)!}{|M|!} (v(S \cup \{j\}) - v(S))$ u(S) is the payoff with only players

v(S) is the payoff with only players in subset S

Several mathematical optimality properties

Intuition behind the Shapley formula

Game with 3 players

121 131 - 11131

Shapley values for taxi sharing

Costs: \$3/mi

 $v(\{R, B, G\}) = (4 + 6 + 2)mi * \$3 = \$36$ $v(\{\}) = \$0$

$$v(\{R\}) = 4mi * \$3 = \$12$$

 $v(\{B\}) = (5+2)mi * \$3 = \21
 $v(\{G\}) = 5mi * \$3 = \15
 $v(\{R, B\}) = (4+6)mi * \$3 = \$30$
 $v(\{R, G\}) = (4+6+2)mi * \$3 = \$36$
 $v(\{B, G\}) = (5+2)mi * \$3 = \$21$

 $\phi_{R} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{B, G\}) \right) + \frac{1}{6} \left(v(\{R, B\}) - v(\{B\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{G\}) \right) + \frac{1}{3} \left(v(\{R\}) - v(\{\}) \right) = \14 $\phi_{B} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{R, G\}) \right) + \frac{1}{6} \left(v(\{R, B\}) - v(\{R\}) \right) + \frac{1}{6} \left(v(\{B, G\}) - v(\{G\}) \right) + \frac{1}{3} \left(v(\{B\}) - v(\{\}) \right) = \11 $\phi_{G} = \frac{1}{3} \left(v(\{R, B, G\}) - v(\{R, B\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{R\}) \right) + \frac{1}{6} \left(v(\{R, G\}) - v(\{B\}) \right) + \frac{1}{3} \left(v(\{G\}) - v(\{\}) \right) = \11

Shapley values for prediction explanation

- Approach popularised by Lundberg & Lee (2017)
 - Players = features $(x_1, ..., x_M)$
 - Payoff = prediction $(f(\mathbf{x}^*))$
 - Contribution function: $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$
 - Properties

$$\phi_0 + \sum_{j=1}^M \phi_j = f(\mathbf{x}^*)$$

$$f(\mathbf{x}) \perp x_j$$
 x_i, x_j same contribution
implies $\phi_j = 0$ implies $\phi_i = \phi_j$

Interpretation of ϕ_j : The prediction change caused by observing the value of x_j – averaged over whether the other features were observed or not

$\begin{array}{c} x \\ x_{S} \\ z_{S} \\ z_{S} \\ z_{S} \end{array}$

 $\phi_0 = E[f(\mathbf{x})]$

Example of Shapley value explanation

- Consider a model f(x) trained to predict a fair price of a car insurance based on the following features x:
 - Owner's age, owner's gender, type of car, time since the car was registered, number of accidents the last 5 years

Shapley value prediction explanation

Feature contribution

Two main challenges

1. The computational complexity in the Shapley formula is of size 2^{M}

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

- Approximate solutions may be obtained by using a finite sample of subsets S (KernelSHAP; Lundberg & Lee, 2017)
- 2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_{S} = \mathbf{x}_{S}^{*}] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{S}^{*})p(\mathbf{x}_{\bar{S}}|\mathbf{x}_{S} = \mathbf{x}_{S}^{*})d\mathbf{x}_{\bar{S}}$$

- Lundberg & Lee (2017)
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
 - Estimates $p(x_{\bar{S}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral
 - This assumes the features are independent!

Two main challenges

1. The computational complexity in the Shapley formula is of size 2^{M}

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

- Approximate solutions may be obtained by using a finite sample of subsets S (KernelSHAP; Lundberg & Lee, 2017)
- 2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_{S} = \mathbf{x}_{S}^{*}] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{S}^{*}) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_{S} = \mathbf{x}_{S}^{*}) d\mathbf{x}_{\bar{S}}$$

- Lundberg & Lee (2017)
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
 - Estimates $p(x_{\bar{s}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral
 - This assumes the features are independent!

Consequences of the independence assumption

- Requires evaluating $f(x_{\bar{s}}, x_{s})$ at potentially <u>unlikely or illegal</u> combinations of $x_{\bar{s}}$ and x_{s}
 - Example 1
 - Number of transactions to Switzerland: 0
 - Average transaction amount to Switzerland: 100 €

- ► Example 2
 - Age: **17**
 - Marital status: Widow
 - Profession: Professor

Estimating v(S) properly

12

Approaches to estimate and sample from $p(x_{\bar{S}} | x_{S} = x_{S}^{*})$

1. Continuous features: Assume p(x) is Gaussian $N(\mu, \Sigma)$

Approaches to estimate and sample from $p(x_{\bar{s}} | x_{\bar{s}} = x_{\bar{s}}^*)$

2. Continuous features: Assume p(x) is a Gaussian copula

Transform each x_i to $u_i \sim U[0,1]$ with inverse empirical CDF Obtain analytical expression for the Gaussian distribution $p_{v}(\boldsymbol{v}_{\bar{S}}|\boldsymbol{v}_{S}=\boldsymbol{v}_{S}^{*})$ Transform each u_i to $v_i \sim N(0,1)$ Sample from $p_{\nu}(\boldsymbol{v}_{\bar{S}} | \boldsymbol{v}_{\bar{S}} = \boldsymbol{v}_{\bar{S}}^*)$ + transform back to original scale Estimate the correlation $\Sigma^{\mathbf{v}}$ of (v_1, \dots, v_M)

Gaussian Copula

Approaches to estimate and sample from $p(x_{\bar{S}} | x_{\bar{S}} = x_{\bar{S}}^*)$

3. Continuous features: Use an empirical (conditional) distribution which weights the training observations $(x_{\bar{S}}^i)$ by their proximity to $x_{\bar{S}}^*$:

Approaches to estimate and sample from $p(x_{\bar{S}} | x_{S} = x_{S}^{*})$

4. Continuous features: Estimate the dependence structure with a pair copula and weight the training observations using this construction

Approaches to estimate and sample from $p(x_{\bar{S}} | x_{S} = x_{S}^{*})$

5. Mixed data: Use a multivariate decision trees as empirical distribution

For each *S*, fit a multivariate decision tree* to response $y = x_{\bar{S}}$ based on $x_{\bar{S}}$

Approx $p(x_{\bar{S}} | x_{\bar{S}} = x_{\bar{S}}^*)$ by the empirical distribution of the training observations $x_{\bar{S}}^i$ in the terminal node of $x_{\bar{S}} = x_{\bar{S}}^*$

Approaches to estimate and sample from $p(x_{\bar{S}} | x_{\bar{S}} = x_{\bar{S}}^*)$

6. Mixed data: Use an variational autoencoder with arbitrary conditioning (VAEAC)

When to use the different approaches

- Trade-offs between speed and accuracy
- Performance depends on data type and dependence structure
- General advice
 - Continuous data: Empirical approach
 - Gaussian if large n_train or M
 - Pair-copula if very heavy tails
 - Categorical/mixed data: Ctree
 - Future: Maybe VAEAC when properly implemented
- TreeSHAP and KernelSHAP available from the shap Python library do NOT give useable estimates of $v(S) = E[f(x)|x_S = x_S^*]$ unless all features are close to independent

Different prediction explanation games

- Observational/conditional Shapley values uses
 - $v_C(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S^*) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) d\mathbf{x}_{\bar{S}}$
- Interventional Shapley values uses
 - $v_{do}(S) = E[f(\mathbf{x})|do(\mathbf{x}_S = \mathbf{x}_S^*)] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) p(\mathbf{x}_{\bar{S}}|do(\mathbf{x}_S = \mathbf{x}_S^*)) d\mathbf{x}_{\bar{S}} = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) p(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}} = v_I(S)$

Janzing et al. (2019)

- Chen et al. (2020) states that whether $v_C(S)$ or $v_I(S)$ is most appropriate depends on the application
 - $v_c(S)$ is most approviate if you want to learn about the actual relationship between features and modelled response
 - $v_I(S)$ is appropriate if you are debugging your model
- ► Heskes et al. (2020): Causal Shapley values
 - $v_{do}(S) = E[f(\mathbf{x})|do(\mathbf{x}_{S} = \mathbf{x}_{S}^{*})] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{S}^{*})p(\mathbf{x}_{\bar{S}}|do(\mathbf{x}_{S} = \mathbf{x}_{S}^{*}))d\mathbf{x}_{\bar{S}},$ but $p(\mathbf{x}_{\bar{S}}|do(\mathbf{x}_{S} = \mathbf{x}_{S}^{*})) \neq p(\mathbf{x}_{\bar{S}}),$ so $v_{do}(S) \neq v_{I}(S)$!
 - Rather model $p(x_{\bar{S}}|do(x_{\bar{S}} = x_{\bar{S}}^*))$ with assumed causal ordering
 - Requires estimate conditional distributions, but not all combinations

Different prediction explanation games My viewpoint

- Independence/Interventional Shapley values $(v_I(S))$ is only appropriate if
 - all features close to independent
 - or all dependence between features are due to a common confounder
 - You are debugging/testing robustness of your model
- Use Causal Shapley values

- when you have confident knowledge about causal dependence between features
- All other cases: Use observational/conditional Shapley values
 - Observational/conditional Shapley values ⇔ Causal Shapley values if no features are assumed to causally affect other features

Two main challenges

1. The computational complexity in the Shapley formula is of size 2^{M}

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

- Approximate solutions may be obtained by using a finite sample of subsets S (KernelSHAP; Lundberg & Lee, 2017)
- 2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S^*) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) \mathrm{d}\mathbf{x}_{\bar{S}}$$

- Lundberg & Lee (2017)
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) \mathrm{d}\mathbf{x}_{\bar{S}},$
 - Estimates $p(x_{\bar{s}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral
 - This assumes the features are independent!

Computational bottlenecks

1. The sum in the Shapley value formula is of size 2^{M} , growing exponentially in the number of features

2. How can we visualize, interpret and extract knowledge from 100s or 1000s of Shapley values?

- Typically: the sum of many small ϕ_i > sum of the few large ones
- Many highly dependent features complicates the interpretation

 $M=5\Rightarrow 2^M=32$

 $M=10 \Rightarrow 2^M=1024$

 $M=40 \Rightarrow 2^M > 10^{12}$

 $M=100 \Rightarrow 2^M>10^{30}$

 $M=1000\Rightarrow 2^M>10^{301}$

 $M=20\Rightarrow 2^M=1048676$

groupShapley

XAI.it 2021 - Italian Workshop on Explainable Artificial Intelligence

Efficient and simple prediction explanations with groupShapley: A practical perspective

Martin Jullum¹, Annabelle Redelmeier¹ and Kjersti Aas¹

¹Norwegian Computing Center, P.O. Box 114, Blindern, N-0314 Oslo, Norway

- Fundamentally very simple approach
 - Divide the *M* features into a small number of *G* disjoint groups $\{G_1, \dots, G_G\}$.
 - Replace the feature subsets *S* in the Shapley formula by group subsets *T*:

$$\phi_{G_i} = \sum_{T \subseteq G \setminus \{G_i\}} w(|T|) \left(v(T \cup G_i) - v(T) \right)$$

• The scores are still Shapley values, so all mathematical properties are kept (on group level)

- What about the bottlenecks?
 - $2^G \ll 2^M \Rightarrow$ computationally tractable
 - G small \Rightarrow easy to visualize

Shapley value contribution ϕ_{G_i} per <u>feature group</u>

How to group the features?

- Crucial to group features based on the desired explanation
- Grouping based on feature dependence
 - Highly dependent features grouped together, using e.g. a clustering method.
 - Easier to study theoretically
 - Often difficult to extract knowledge from in practice
- Grouping based on application/feature knowledge
 - Group features of similar type or general category
 - Gives directly meaningful interpretations of computed groupShapley values
 - May perform multiple explanations with different groupings for increased understanding
- We advocate grouping based on feature knowledge in practical applications

Practical example 1: Car insurance

- US Car insurance dataset
 - 10 302 customers with records of crash/no crash + 21 features
 - Fit a random forest model with 500 trees to predict crash based on the 21 features

- 3 feature groups based on type
 - Track record (4 features): # claims last 5 years, # licence record points, previous licence revokes, time as customer
 - Personal information (13 features): age of driver, education level, # children, job type, # driving children, marital status, gender, distance to work +++
 - Car information (4 features) value of car, age of car, type of car, whether car is red

Practical example 1: Car insurance

- Explain predictions for 3 individuals
- 1 claim last 5 years, 3 licence record points. Single mother of 4 (2 driving). Driving a SUV, 27 miles to work.
- 2. Got licence revoked and 10 licence record points. 37 year old father of 2 (1 driving).
- 3 claims last 5 years, no licence record points
 60 year old married doctor with no children, with a PhD Red sports car.

Practical example 2: Gene data

- Disease classification with high dimensional gene data
 - 127 patients where 85 are diseased with either Crohn's disease (CD) or Ulcerative colitis (UC) + 42 healthy controls.
 - 4 834 genes (after pre-processing)
 - Using 100 random individuals, we fit a Lasso penalized linear regression model to predict P(diseased with either CD or UC) based on the patient's genes

Feature groups

- Use the so-called Hallmark gene set to group the features (genes) into 23 different groups commonly used in gene set enrichment analysis
- The Hallmark gene set "conveys a specific biological state or process" (Liberzon et al., 2015)

Practical example 2: Gene data

- Compute groupShapley values for the remaining 27 patients
- Make separate groupShapley boxplots for UC, CD and controls
- Can we identify genetical similarities and differences for UC and CD?
- Note: Model not trained to separate UC and CD

Software

R-package shapr

shapr: An R-package for explaining machine learning models with dependence-aware Shapley values

Nikolai Sellereite 1 and Martin Jullum 1

- Computes Shapley values for any model f(x) with different dependence-aware methods for estimating v(S)
- All functionality works for both feature-wise and group-wise Shapley values
- Currently undergoing heavy restructuring to allow
 - Parallellization
 - Reduce memory usage
 - Causal Shapley values
 - Improved user experience +++
 - Python wrapper

Take home points

- The Shapley value framework from game theory can be used to explain predictions from any ML model
- Shapley value measures the value of observing each feature
- There are two main challenges with such explanations
 - Computational complexity -> Approximate by sample of subsets S, or explain feature groups instead
 - Estimating contribution function v(S) -> Several different methods for different settings
- There exists other prediction explanation games:
 - Interventional Shapley values can be used for "debugging"
 - Causal Shapley values is promising if you have prior causal knowledge
- You can do most (hopefully all quite soon) types of prediction explanations efficiently with the shapr R-package
 - See package vignette at <u>https://norskregnesentral.github.io/shapr/</u> for an intro

References

- 1. Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are dependent: More accurate approximations to shapley values. Artificial Intelligence **298**, 103502 (2021)
- 2. Aas, K., Nagler, T., Jullum, M., Løland, A.: Explaining predictive models using shapley values and non-parametric vine copulas. Dependence Modeling **9**, 62–81 (2021)
- 3. Chen, H., Janizek, J.D., Lundberg, S., Lee, S.I.: True to the model or true to the data? arXiv preprint arXiv:2006.16234 (2020)
- 4. Heskes, T., Sijben, E., Bucur, I.G., Claassen, T.: Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models. Advances in Neural Information Processing Systems **33** (2020)
- 5. Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable ai: A causal problem. In: International Conference on Artificial Intelligence and Statistics. pp. 2907–2916. PMLR (2020)
- 6. Jullum, M., Redelmeier, A., Aas, K.: Efficient and simple prediction explanations with groupshapley: A practical perspective. In: Proceedings of the 2nd Italian Workshop on Explainable Artificial Intelligence. pp. 28–43. CEUR Workshop Proceedings (2021)
- 7. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems. pp. 4768–4777 (2017)
- 8. Olsen, L.H.B., Glad, I.K., Jullum, M., Aas, K.: Using shapley values and variational autoencoders to explain predictive models with dependent mixed features. arXiv preprint arXiv:2111.13507 (2021)
- 9. Redelmeier, A., Jullum, M., Aas, K.: Explaining predictive models with mixed features using shapley values and conditional inference trees. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction. pp. 117–137. Springer (2020)
- 10. Sellereite, N., Jullum, M.: shapr: An r-package for explaining machine learning models with dependence-aware shapley values. Journal of Open Source Software 5(46), 2027 (2020)
- 11. Shapley, L.: A value fo n-person games. Ann. Math. Study28, Contributions to the Theory of Games, ed. by HW Kuhn, and AW Tucker pp. 307–317 (1953)

Contact

jullum@nr.no

https://martinjullum.netlify.app