

jullum@nr.no

groupSHAP

Efficient Shapley value explanation through feature groups

Martin Jullum Norwegian Computing Center

SHAP (SHapley Additive exPlanations) The practical issue

Notation

S = a subset of the M features $v(S) = E[f(x)|x_S = x_S^*]$ w(S) = weight function

- Problem: Want to explain predictions from a model f(x) with *M* features
- Shapley value formula for feature *j*

• Computational complexity

$$egin{aligned} M &= 5 \Rightarrow 2^M = 32 \ M &= 10 \Rightarrow 2^M = 1024 \ M &= 20 \Rightarrow 2^M = 1048676 \ M &= 40 \Rightarrow 2^M > 10^{12} \ M &= 100 \Rightarrow 2^M > 10^{30} \ M &= 1000 \Rightarrow 2^M > 10^{301} \end{aligned}$$

Generally nonsatisfactory approximation methods exists

- KernelSHAP*
 - Inaccurate for large *M*
- TreeSHAP/TreeExplainer*
 - Limited to tree-based models
- DASP (Deep Approximate Shapley Propagation)
 - Limited to neural Networks

 In any case: Potentially too long list of contributions from <u>dependent</u> features

*The popular python library *shap* uses KernelSHAP/TreeSHAP

groupSHAP The idea

- A fundamentally simple solution:
 - Divide the *M* features into *G* feature groups
 - Replace the feature subsets *S* in the Shapley formula by feature group subsets *T*
- Shapley formula for feature group g

 $\psi_g = \sum_{ ext{all } T ext{ without } g} w(T)(v(T \cup \{g\}) - v(T))$

- 2^G terms $<< 2^M \Rightarrow$ Computationally tractable
- Still a Shapley value, so all properties remains
- Potential grouping criteria
 - Type of feature
 - Origin/source of feature
 - Feature dependence (high-dependence features in same group)

Shapley value contribution ψ_j per <u>feature group</u>

Example groups, car insurance:

- Car info
- main driver info
- other driver info
- previous incident info

groupSHAP Theoretical result

Is group-wise Shapley values (using groupSHAP) ever the same as summing feature-wise Shapley values?

I.e. do we ever have? $\psi_g = \sum_{j \in g} \phi_j$

YES!

Any partially additively separable function with between-group feature independence

 $egin{aligned} (f(oldsymbol{x}) &= \sum_{g=1}^G f_g(oldsymbol{x}_g)) \ (oldsymbol{x}_g oldsymbol{oldsymbol{oldsymbol{h}}}_{g'}) \end{aligned}$

has
$$\psi_g = \sum_{j \in g} \phi_j$$

groupSHAP Practical use (through R-package *shapr*)

Code example

remotes::install_github("NorskRegnesentral/shapr",ref = "groupSHAP")

Loading the Boston housing data set data("Boston", package = "MASS") x_var <- c("lstat", "rm","dis","indus","nox","tax") y_var <- "medv"</pre>

8 x_train <- as.matrix(Boston[1:50, x_var])
9 y_train <- Boston[1:500, y_var]
10 x_test <- as.matrix(Boston[501:504, x_var])</pre>

Fitting a basic xgboost model

model <- xgboost::xgboost(
 data = x_train,
 label = y_train,
 nround = 20,
 verbose = FALSE
)</pre>

Prepare the data for explanation
explainer <- shapr::shapr(x_train, model, group = group)</pre>

Run the explainer

Plot the group-wise shapley values
plot(explanation,plot_phi0 = F)

groupSHAP branch on GitHub (under development)

Resulting explanation figure

