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► All financial institutions are 

legally binded to report 

“suspicious transactions” to 

Økokrim
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Current AML process at DNB

Weaknesses

▪ Many false 

positive alerts –

much manual work

▪ Too simplistic –

Money launderers 

are more 

sophisticated
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system with a machine 
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▪ Available data types:

▪ transaction history

▪ customer data

▪ alerts

▪ manually inspected 

cases
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More realistic setting!



What makes this hard?

Money laundering

transactions

«irregular» 

legal 

transactions

«regular» 
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transactions



▪ Binary response (𝑌): Transaction sent to Økokrim (Yes = 1, no = 0)

▪ Want to predict 𝑃(𝑌 = 1|data related to present transaction)

▪ State of the art: Gradient boosting machines (GBM)

▪ XGBoost – very efficient and flexible implementation of GBM based on tree 

models

▪Requires tabular data input (features)

Modelling



Input data types

▪Specific transaction info

▪Background info about 

sender/receiver

▪Sender/receiver’s transaction history

▪Previously reported transactions from 

sender/receiver

Transforming raw data 
(feature engineering)

Y X1 X2 X3 X4 X5 X6

1 0,453406 0,992838 0,734389 0,159918 0,397515 0,949952

0 0,274 0,654207 0,169886 0,493841 0,407112 0,939789

0 0,741897 0,855005 0,585788 0,366456 0,365123 0,57955

1 0,488119 0,465754 0,716517 0,493048 0,855049 0,632114

0 0,134458 0,762057 0,848194 0,098779 0,872603 0,063026

0 0,531914 0,998817 0,808215 0,060721 0,716595 0,35374

0 0,341509 0,8398 0,637808 0,48304 0,279987 0,730286

0 0,530306 0,463271 0,338713 0,986781 0,925251 0,272484

1 0,864123 0,652763 0,689599 0,080937 0,990294 0,364736

0 0,106812 0,900351 0,450224 0,143815 0,593244 0,020764

1716 columns (features)



2 years of modellable transaction data

▪ All transactions leading to 

▪ A report (C)

▪ An alert, but no report (B)

▪ A sample of normal transactions (A)

Data refinement

▪ We chose #A = #B

▪ Use only one transaction from each 

manual investigation (2)

▪ No transactions with same sender/receiver 

two consecutive days

Data refinement
A

B

C



Modelling

▪ 10-fold cross validation (CV) 

▪ Stopping criterion (# boosting 

rounds):  AUC

▪ Tuning: Random + iterative grid-search

▪Model trained on GPU

▪ Final model used for prediction on test data: 

መ𝑓 𝑥test =
1

10


𝑖=1

10

መ𝑓𝐶𝑉,−𝑖 (𝑥test)

Training, testing and modelling

Out-of-time testing

1.5 years            0.5 years 

Training               Test



2 training scenarios
All data types No unreported transactions



Evaluation metrics

Probabilities:

Brier score

Ranking:

AUC



Comparing scenarios

Much better!

All data types No unreported 

transactions

AUC 0.907 0.852

Brier 0.025 0.340



ML (all data types)       Current system

PPP 31.5 %

▪ Hard to properly compare

▪ PPP = Proportion of Positive Predictions:

Proportion of transactions that needs to be 

controlled to find 95% of the reported 

transactions

ML vs current AML system

48.9 %



Limitations

▪ We are not really using the time-evolving transaction network

▪ Who are you sending/receiving money to/from

▪ When are you sending/receiving

▪ Social/professional network information is not used

▪ Many variables – complicates putting the model into production

▪ The model only learns “known” what has already been reported



Further work

▪ To a greater extent utilize the transaction network

▪ Methodology stemming form NLP (word2vec)

▪ Training embeddings (numerical vectors) with neural networks 

to represent the transaction network for each customer

▪ Resources at DNB are working on utilizing customer’s 

professional role network (Brønnøysundregisteret)




