

#### Proper prediction explanation with shapr

Martin Jullum



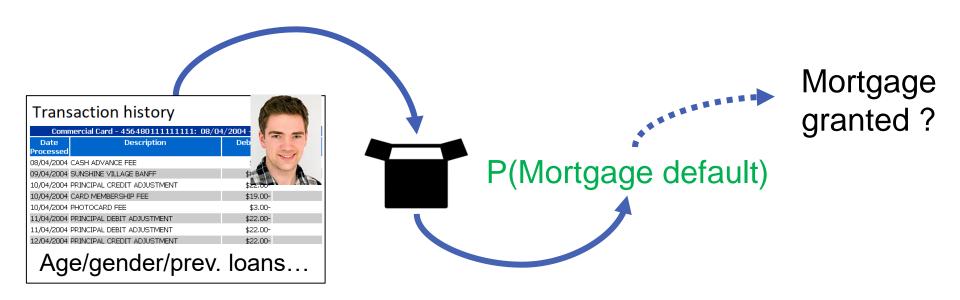
NAV Oslo, June 26th 2020



#### Example: Bank creates mortgage robot



#### Transaction history


| Commercial Card - 456480111111111: 08/04/2004 - 14/04/2004 |                             |          |        |
|------------------------------------------------------------|-----------------------------|----------|--------|
| Date<br>Processed                                          | Description                 | Debit    | Credit |
| 08/04/2004                                                 | CASH ADVANCE FEE            | \$5.00-  |        |
| 09/04/2004                                                 | SUNSHINE VILLAGE BANFF      | \$86.97- |        |
| 10/04/2004                                                 | PRINCIPAL CREDIT ADJUSTMENT | \$22.00- |        |
| 10/04/2004                                                 | CARD MEMBERSHIP FEE         | \$19.00- |        |
| 10/04/2004                                                 | PHOTOCARD FEE               | \$3.00-  |        |
| 11/04/2004                                                 | PRINCIPAL DEBIT ADJUSTMENT  | \$22.00- |        |
| 11/04/2004                                                 | PRINCIPAL DEBIT ADJUSTMENT  | \$22.00- |        |
| 12/04/2004                                                 | PRINCIPAL CREDIT ADJUSTMENT | \$22.00- |        |
| Ago/gondor/prov/loopo                                      |                             |          |        |

#### Age/gender/prev. loans...





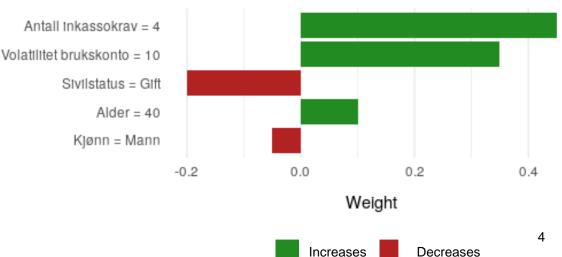
#### **Example: Bank creates mortgage robot**



 $x \longrightarrow f(x) \longrightarrow p = 0.7$ 



# **Individual** prediction explanation


- NOT a general explanation of the black-box model
- $x = x^*$ : Transaction history/features for

Explanation for  $f(\mathbf{x}^*) = 70\%$ 



How did each feature contribute to increase/decrease the predicted value f(x\*)=70%?

Feature

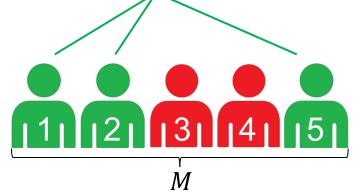


# Why is this important?



- Customers may have a "right to an explanation"
- Builds trust to the "robot"

### **Shapley values**




- Concept from (cooperative) game theory in the 1950s
- Used to distribute the total payoff to the players
- Explicit formula for the "fair" payment to every player j:

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left( v(S \cup \{j\}) - v(S) \right), \quad w(S) \text{ is a weight function}$$

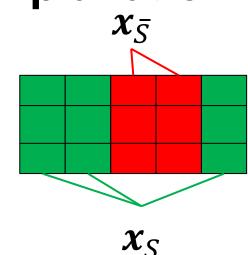
v(S) is the payoff with only players in subset S

 Several mathematical optimality properties



# Intuition behind the Shapley formula Game with 3 players 131

## Shapley values for prediction explanation


- ▶ Players = features  $(x_1, ..., x_M)$
- Payoff = prediction  $(f(x^*))$
- Contribution function:  $v(S) = E[f(x)|x_S = x_S^*]$
- **Properties**

$$f(\mathbf{x}^*) = \sum_{j=0}^M \phi_j$$

 $E[f(\mathbf{x})] = E[f(\mathbf{x})|x_i]$ implies  $\phi_i = 0$ 

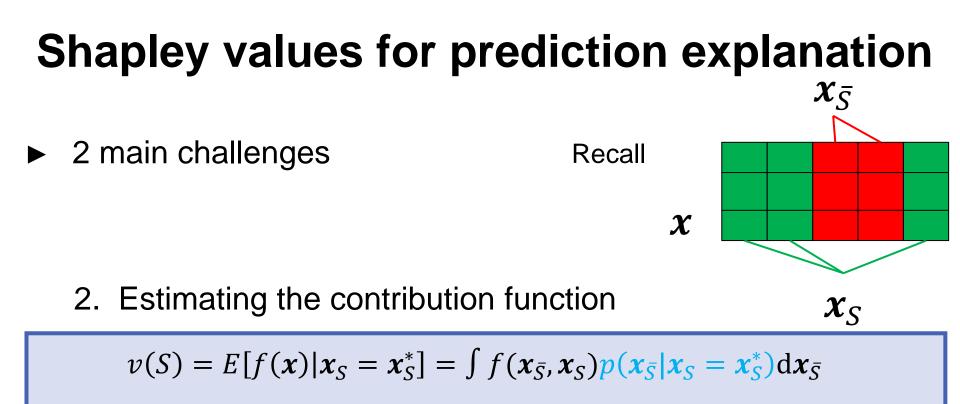
 $x_i, x_i$  same contribution implies  $\phi_i = \phi_i$ 

Rough interpretation of  $\phi_i$ : The prediction change when you don't know the value of x<sub>i</sub> -- averaged over all features



$$\phi_0 = E[f(\boldsymbol{x})]$$

X


#### Shapley values for prediction explanation

► 2 main challenges

1. The computational complexity in the Shapley formula

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left( v(S \cup \{j\}) - v(S) \right)$$

 Partly solved by cleverly reducing the sum by subset sampling (KernelSHAP; Lundberg & Lee, 2017)



- Previous methods
  - Approximates  $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$ ,
  - Estimates  $p(x_{\bar{s}})$  using the empirical distribution of the training data
  - Monte Carlo integration to solve the integral
  - This assumes covariates are independent!

#### **Consequences of the independence assumption**

- Requires evaluating  $f(x_{\overline{s}}, x_{\overline{s}})$  at potentially <u>unlikely or</u> <u>illegal</u> combinations of  $x_{\overline{s}}$  and  $x_{\overline{s}}$
- Example 1
  - Number of transactions to Switzerland: 0
  - Average transaction amount to Switzerland: 1000 NOK



- ► Example 2
  - Age: 17
  - Marital status: Widow
  - Profession: Professor



#### **Our idea**

# Estimate $p(x_{\bar{S}} | x_S = x_S^*)$ properly +

### Monte Carlo integration

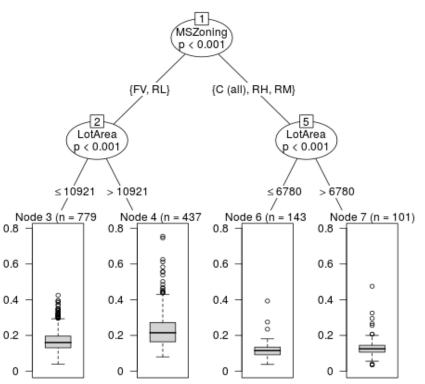
### **Continuous features**

- How to estimate  $p(x_{\bar{S}}|x_S = x_S^*)$  when x is continuous?
- 3 approaches
  - Assume  $p(\mathbf{x})$  Gaussian => analytical  $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$
  - Assume Gaussian copula => transformation + analytical expression
  - An empirical (conditional) approach where training observations at x<sup>i</sup><sub>s</sub> are weighted based on proximity of x<sup>i</sup><sub>s</sub> to x<sup>\*</sup><sub>s</sub>

# Explaining sick leave predictions / 1997//

- NAV is modelling how long individuals are on sick leave
  - Used by case workers to schedule follow-up meetings
- Case workers need to understand the "reasoning" of the individual predictions
- Modelling based on
  - age, gender, sick leave history, type of business etc.
  - Several categorical features with many levels
- Need methodology for prediction explanation which can handle categorical features

#### **Our idea**


# Estimate $p(x_{\bar{S}} | x_{\bar{S}} = x_{\bar{S}}^*)$ properly +

### Monte Carlo integration

#### Our contribution: categorical/mixed variables



- Estimating  $p(\mathbf{x}_{\overline{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$ 
  - For every subset *S*, fit a
    (multivariate) regression tree
    to y = x<sub>s</sub> based on x<sub>s</sub> using
    the training data
  - Approximate  $p(\mathbf{x}_{\overline{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$  by the empirical distribution of the training observations  $(\mathbf{x}_{\overline{S}})$ within the terminal node of  $\mathbf{x}_{S} = \mathbf{x}_{S}^{*}$



# How to use this is practice?

 All of this is implemented on our R-package shapr on GitHub (soon CRAN) github.com/NorskRegnesentral/shapr



- Paper (continuous variables): <u>https://arxiv.org/abs/1903.10464</u>
- Paper (categorical/mixed variables): <u>https://arxiv.org/abs/2007.01027</u>

