

How to open the black box

Individual prediction explanation

Martin Jullum

Joint work with Kjersti Aas, Anders Løland and Annabelle Redelmeier

NTNU Statistics Seminar Trondheim, March 9th 2020

Example: Bank creates mortgage robot

Transaction history

Commercial Card - 456480111111111: 08/04/2004 - 14/04/2004			
Date Processed	Description	Debit	Credit
08/04/2004	CASH ADVANCE FEE	\$5.00-	
09/04/2004	SUNSHINE VILLAGE BANFF	\$86.97-	
10/04/2004	PRINCIPAL CREDIT ADJUSTMENT	\$22.00-	
10/04/2004	CARD MEMBERSHIP FEE	\$19.00-	
10/04/2004	PHOTOCARD FEE	\$3.00-	
11/04/2004	PRINCIPAL DEBIT ADJUSTMENT	\$22.00-	
11/04/2004	PRINCIPAL DEBIT ADJUSTMENT	\$22.00-	
12/04/2004	PRINCIPAL CREDIT ADJUSTMENT	\$22.00-	
۸	- /	1	

Age/gender/prev. loans...

Example: Bank creates mortgage robot

 $x \longrightarrow f(x) \longrightarrow p = 0.7$

Why is this important?

- Customers may have a "right to an explanation"
- Builds trust to the "robot"

Individual prediction explanation

- NOT a general explanation of the black-box model
- $x = x^*$: Transaction history/covariates for

Explanation for $f(\mathbf{x}^*) = 70\%$

A (mathematical) description/visualization/ characterization of how **each of the covariates** contributed/affected the specific prediction $f(x^*)=70\%$

Explaining a simple linear model

- Model $y = f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
- How would you explain predictions from this model?
- Explanation depends on:
 - β_1 and β_2
 - β₀
 - x₁^{*} and x₂^{*}

- $E[x_1]$ and $E[x_2]$
- $sd(x_1)$ and $sd(x_2)$
- $corr(x_1, x_2)$

Claim: A simple linear model is only easily interpretable if x₁ and x₂ are independent and standardized!

Prediction explanation frameworks

- Model-specific methods:
 - Deep Lift/Relevance propagation:
 - TreeSHAP:
- Model-agnostic methods:
 - LIME
 - Counterfactual explanations:
 - Shapley values

Local linear regression

For tree based methods

For neural networks

- Which covariates should be altered to obtain a different decision?
- Based on concepts from game theory

LIME

(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to f(x) based on standardized covariates and weight determined by distance to x*
- Importance score for each covariate: Coefficient from local model

LIME

(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to f(x) based on standardized covariates and weight determined by distance to x*
- Importance score for each covariate: Coefficient from local model

- Challenges
 - Defining the distance and weight functions

LIME

(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to f(x) based on standardized covariates and weight determined by distance to x*
- Importance score for each covariate: Coefficient from local model

Challenges

- Defining the distance and weight functions
- Direct use of local model coefficients
- Advantages
 - Simple idea
 - Easy to use

Counterfactual explanations

- What is the smallest covariate change necessary to change the prediction "significantly"?
- Optimization problem:

(Ex) $\arg\min_{x'} d(x^*, x')$, subject to $|f(x') - [f(x^*) + \lambda]| \le \varepsilon$

- Explanation: Minimizers of (Ex)
- Challenges:
 - Choosing d, λ and ε
 - May lead to many sub-explanations
 - Need to interpret the explanations yourself

- Advantages
 - Cannot be wrong
 - Guides user on how to change prediction

Shapley values

- Concept from (cooperative) game theory in the 1950s
- Used to distribute the total payoff to the players
- Explicit formula for the "fair" payment to every player j:

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right), \quad w(S) \text{ is a weight function}$$

v(S) is the payoff with only players in subset S

 Several mathematical optimality properties

Intuition behind the Shapley formula Game with 3 players 1 2 3 31

- Players = covariates (x_1, \dots, x_M)
- Payoff = prediction $(f(\mathbf{x}^*))$
- Contribution function: $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$
- **Properties**

$$f(\mathbf{x}^*) = \sum_{j=0}^M \phi_j$$

 $E[f(\mathbf{x})] = E[f(\mathbf{x})|x_i]$ implies $\phi_i = 0$

implies $\phi_i = \phi_i$

 \boldsymbol{x}_{S}

Rough interpretation of ϕ_i : The prediction change when you **don't know the value of** x_i -- averaged over all covariates

Х

 $\phi_0 = E[f(\mathbf{x})]$

 x_i, x_i same contribution

► 2 main challenges

1. The computational complexity in the Shapley formula

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right)$$

 Partly solved by cleverly reducing the sum by subset sampling (KernelSHAP; Lundberg & Lee, 2017)

2 main challenges

2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) \mathrm{d}\mathbf{x}_{\bar{S}}$$

- Previous methods
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
 - Estimates $p(x_{\bar{S}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral
 - This assumes covariates are independent!

X

Recall

Consequences of the independence assumption

- Requires evaluating $f(x_{\overline{s}}, x_{\overline{s}})$ at potentially <u>unlikely or</u> <u>illegal</u> combinations of $x_{\overline{s}}$ and $x_{\overline{s}}$
- Example 1
 - Number of transactions to Switzerland: 0
 - Average transaction amount to Switzerland: 1000 NOK

- ► Example 2
 - Age: 17
 - Marital status: Widow
 - Profession: Professor

• Explicit formula for a linear model $f(\mathbf{x}) = \beta_0 + \sum_{j=1}^M \beta_j x_j$ with **independent** covariates:

 $\phi_0 = \beta_0 + \sum_{j=1}^M \beta_j E[x_j], \quad \phi_j = \beta_j (x_j^* - E[x_j]), \ j = 1, ..., M$

- Advantages
 - Proper mathematical foundation
 - Desirable set of properties

- ► Challanges
 - Computationally heavy
 - Requires good estimates of a difficult estimation problem: E[f(x)|x_S = x^{*}_S]
- From our perspective the method with greatest potential
 what we have work with the last two years

Our idea

Estimate $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$ properly +

Monte Carlo integration to approximate

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_{S} = \mathbf{x}_{S}^{*}] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{S}) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_{S} = \mathbf{x}_{S}^{*}) d\mathbf{x}_{\bar{S}}$$

Continuous covariates

- How to estimate $p(x_{\bar{S}}|x_S = x_S^*)$ when x is continuous?
- 3 approaches
 - Assume $p(\mathbf{x})$ Gaussian => analytical $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$
 - Assume Gaussian copula => transformation + analytical expression
 - An empirical (conditional) approach where training observations at xⁱ_s are weighted based on proximity of xⁱ_s to x^{*}_s

Empirical conditional approach

1. Compute the scaled Mahalanobis distance between x_S^* and the columns S of the training data $x^1, ... x^n$

$$D_{\mathcal{S}}(\boldsymbol{x}^*, \boldsymbol{x}^i) = \sqrt{\frac{(\boldsymbol{x}_{\mathcal{S}}^* - \boldsymbol{x}_{\mathcal{S}}^i)^T \Sigma_{\mathcal{S}}^{-1} (\boldsymbol{x}_{\mathcal{S}}^* - \boldsymbol{x}_{\mathcal{S}}^i)}{|\mathcal{S}|}}$$

2. Use Gaussian kernel to get weight of each training observation: $D_{\mathcal{S}}(\boldsymbol{x}^*, \boldsymbol{x}^i)^2$

$$w_{\mathcal{S}}(\boldsymbol{x}^{*}, \boldsymbol{x}^{i}) = \exp\left(-rac{D_{\mathcal{S}}(\boldsymbol{x}^{*}, \boldsymbol{x}^{i})^{2}}{2\sigma^{2}}
ight)$$

3. Approximate $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$ by the probability mass function where $p(\mathbf{x}_{\bar{S}} = x^{i} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*}) = \frac{w_{S}(x^{*}, x^{i})}{\sum_{k=1}^{n} w_{S}(x^{*}, x^{k})}$

Empirical conditional approach II

• This gives an estimator of $E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$:

$$\widehat{v}(S) = \frac{\sum_{k=1}^{n} w_S(\boldsymbol{x}^*, \boldsymbol{x}^k) f(\boldsymbol{x}_{\bar{S}}^k, \boldsymbol{x}_{\bar{S}}^*)}{\sum_{k=1}^{n} w_S(\boldsymbol{x}^*, \boldsymbol{x}^k)}$$

- ► It turns out that we re-invented the Nadaraya-Watson estimator (locally constant kernel estimator) aiming at estimating E[U|V=v] for responses u_i = f(xⁱ_S, x^{*}_S), and covariates v_i = xⁱ_S, i = 1, ..., n
- May then use a corrected AIC-criterion by Hurvich and Tsai (JRSS-B, 1998) to select the bandwidth parameter σ .

Categorical/mixed covariates

- How to estimate p(x_s | x_s = x^{*}_s) when x is categorical, or mixed continuous/categorical
 - Fit a multivariate decision tree to $U = x_{\bar{S}}$ based on $V = x_{S}$ using the training data
 - Approximate $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$ by the empirical distribution of the training observations $(\mathbf{x}_{\bar{S}})$ within the terminal node of $\mathbf{x}_{S} = \mathbf{x}_{S}^{*}$

Multivariate decision tree

- Classical decision tree algorithms like CART work only for univariate responses
 - Multivariate generalizations exits
 - CARTs are known to be biased towards splitting on categorical covariates with many levels
- Instead, we rely on Recursive partitioning/conditional inference trees (Hothorn et al., 2006)
 - Decide which covariate to split on first
 - Then decides on the splitting point for that covariate

Conditional inference tree algorithm

• Multivariate response U, covariates V_1, \ldots, V_p

Step 1: Decide whether or not to split by hypothesis testing:

 $H_0: p(\boldsymbol{U}|V_j) = p(\boldsymbol{U}) \forall j \quad \text{vs } H_A: p(\boldsymbol{U}|V_j) \neq p(U) \text{ for some } j$

- Hypothesis test performed by permutation test using a summary statistic for the dependence between U and V_j
- Stop tree building if not rejecting H_0 at a level α
- If rejecting H_0 , pick the covariate with the smallest *p*-value.
- Step 2: Splitting criteria
 - Maximize a two-sample discrepancy statistic
- Implemented in the R-packages party and partykit

Conclusion

Individual prediction explanation, i.e. explaining f(x*) for specific covariate x*

Feature

- Not straightforward to explain even a simple linear model
- Mainly three model-agnostic methods in the literature:
 - LIME, counterfactual explanations, Shapley values
- No grand truth when explaining predictions!
- Ignoring dependence between covariates can give completely wrong explanations

Want to know more?

Read our paper on arXiv arxiv.org/abs/1903.10464

Check out our R-package *shapr* on GitHub (soon CRAN) + JOSS <u>github.com/NorskRegnesentral/shapr</u>