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Example: Bank creates mortgage robot
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& Defaulted 

loan?

Age/gender/prev. loans…
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P(Mortgage default)

𝒙 𝑓 𝒙 𝑝 = 0.7

Age/gender/prev. loans…

Mortgage 

granted ?

Why was        rejected a loan?

Example: Bank creates mortgage robot



Why is this important?

► Customers may have a “right to an explanation”

► Builds trust to the “robot”
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Individual prediction explanation

► NOT a general explanation of the black-box model

► 𝒙 = 𝒙∗: Transaction history/covariates for 

Explanation for 𝑓 𝒙∗ = 70%
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A (mathematical) description/visualization/

characterization of how each of the covariates 

contributed/affected the specific prediction 𝑓(𝒙∗)= 70%



Explaining a simple linear model

► Model 𝑦 = 𝑓 𝒙 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

► How would you explain predictions from this model? 

► Explanation depends on:

► Claim: A simple linear model is only easily interpretable if 

𝑥1 and 𝑥2 are independent and standardized!
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▪ 𝛽1 and 𝛽2
▪ 𝛽0
▪ 𝑥1

∗ and 𝑥2
∗

▪ 𝐸[𝑥1] and E 𝑥2
▪ 𝑠𝑑(𝑥1) and 𝑠𝑑(𝑥2)

▪ 𝑐𝑜𝑟𝑟(𝑥1, 𝑥2)



Prediction explanation frameworks
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► Model-specific methods:

▪ Deep Lift/Relevance

propagation: For neural networks

▪ TreeSHAP: For tree based methods

► Model-agnostic methods:

▪ LIME Local linear regression

▪ Counterfactual Which covariates should be altered

explanations: to obtain a different decision? 

▪ Shapley values Based on concepts from game theory
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► Fits a (local) weighted linear regression model to 𝑓(𝒙) based on 

standardized covariates and weight determined by distance to 𝒙∗

► Importance score for each covariate: Coefficient from local model

LIME 
(Local Interpretable Model-agnostic Explanation) 
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LIME 
(Local Interpretable Model-agnostic Explanation) 

► Challenges

▪ Defining the distance 

and weight functions

► Fits a (local) weighted linear regression model to 𝑓(𝒙) based on 

standardized covariates and weight determined by distance to 𝒙∗

► Importance score for each covariate: Coefficient from local model
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LIME 
(Local Interpretable Model-agnostic Explanation) 

► Challenges

▪ Defining the distance 

and weight functions

▪ Direct use of local 

model coefficients

► Advantages

▪ Simple idea

▪ Easy to use

► Fits a (local) weighted linear regression model to 𝑓(𝒙) based on 

standardized covariates and weight determined by distance to 𝒙∗

► Importance score for each covariate: Coefficient from local model



Counterfactual explanations

► What is the smallest covariate change necessary to 

change the prediction “significantly”?

► Optimization problem:

(Ex) argmin
𝑥′

𝑑(𝒙∗, 𝒙′),    subject to 𝑓 𝒙′ − 𝑓 𝒙∗ + 𝜆 ≤ 𝜀

► Explanation: Minimizers of (Ex)

► Challenges:

▪ Choosing 𝑑, 𝜆 and 𝜀

▪ May lead to many

sub-explanations

▪ Need to interpret the

explanations yourself
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► Advantages

▪ Cannot be wrong

▪ Guides user on how

to change prediction



Shapley values

► Concept from (cooperative) game theory in the 1950s

► Used to distribute the total payoff to the players

► Explicit formula for the “fair” payment to every player 𝑗:

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑤 𝑆 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆 , 𝑤 𝑆 is a weight function

𝑣 𝑆 is the payoff with only players in subset 𝑆

► Several mathematical 

optimality properties

𝑀



Intuition behind the Shapley formula

Game with 3 players
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Shapley values for prediction explanation

► Players = covariates (𝑥1, … , 𝑥𝑀)

► Payoff = prediction (𝑓(𝒙∗))

► Contribution function:  𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗

► Properties

𝑓 𝒙∗ = σ𝑗=0
𝑀 𝜙𝑗 𝜙0 = 𝐸 𝑓 𝒙

𝐸 𝑓 𝒙 = 𝐸[𝑓 𝒙 |𝑥𝑗] 𝑥𝑖 , 𝑥𝑗 same contribution 

implies 𝜙𝑗 = 0 implies 𝜙𝑖 = 𝜙𝑗

► Rough interpretation of 𝜙𝑗: The prediction change when you 

don’t know the value of 𝑥𝑗 -- averaged over all covariates

𝒙

𝒙𝑆 𝒙 ҧ𝑆
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Shapley values for prediction explanation

► 2 main challenges

1. The computational complexity in the Shapley formula

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑤 𝑆 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

◦ Partly solved by cleverly reducing the sum by subset 

sampling (KernelSHAP; Lundberg & Lee, 2017)
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Shapley values for prediction explanation

► 2 main challenges

𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗ d𝒙 ҧ𝑆

◦ Previous methods 

· Approximates 𝑣 𝑆 ≈ ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆
∗)𝑝 𝒙 ҧ𝑆 d𝒙 ҧ𝑆, 

· Estimates 𝑝 𝒙 ҧ𝑆 using the empirical distribution of the training 

data 

· Monte Carlo integration to solve the integral

This assumes covariates are independent!

Recall

2.  Estimating the contribution function
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Consequences of the independence 
assumption

► Requires evaluating 𝑓(𝒙 ҧ𝑆, 𝒙𝑆) at potentially unlikely or 

illegal combinations of 𝒙 ҧ𝑆 and 𝒙𝑆
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► Example 1

▪ Number of transactions to   

Switzerland: 

▪ Average transaction 

amount to Switzerland:

► Example 2

▪ Age: 

▪ Marital status:

▪ Profession:

0

1000 NOK

► Example 2

▪ Age: 17

▪ Marital status: Widow

▪ Profession: Professor



Shapley values for prediction explanation

► Explicit formula for a linear model 𝑓 𝒙 = 𝛽0 +σ𝑗=1
𝑀 𝛽𝑗𝑥𝑗

with independent covariates: 

𝜙0 = 𝛽0 + σ𝑗=1
𝑀 𝛽𝑗𝐸[𝑥𝑗] , 𝜙𝑗 = 𝛽𝑗 𝑥𝑗

∗ − 𝐸 𝑥𝑗 , 𝑗 = 1,… ,𝑀

► From our perspective the method with greatest potential 

– what we have work with the last two years 18

► Advantages

▪ Proper mathematical 

foundation

▪ Desirable set of 

properties

► Challanges

▪ Computationally heavy

▪ Requires good 

estimates of a difficult 

estimation problem: 

𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗



Our idea

Estimate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ properly 

+ 

Monte Carlo integration to approximate
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𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗ d𝒙 ҧ𝑆



Continuous covariates

► How to estimate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ when 𝒙 is continuous?

► 3 approaches

▪ Assume 𝑝(𝒙) Gaussian => analytical 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗

▪ Assume Gaussian copula => transformation + analytical 

expression

▪ An empirical (conditional) approach where

training observations at 𝒙 ҧ𝑆
𝒊 are weighted 

based on proximity of 𝒙𝑆
𝒊 to 𝒙𝑆

∗

20



Empirical conditional approach

1. Compute the scaled Mahalanobis distance between 𝒙𝑆
∗ and 

the columns S of the training data 𝒙1, … 𝒙𝑛

2. Use Gaussian kernel to get weight of each training 

observation: 

3. Approximate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ by the probability mass function 

where  𝑝 𝒙 ҧ𝑆 = 𝑥𝑖|𝒙𝑆 = 𝒙𝑆
∗ =

𝑤𝑆(𝒙
∗,𝒙𝑖)

σ𝑘=1
𝑛 𝑤𝑆(𝒙

∗,𝒙𝑘)



Empirical conditional approach II

► This gives an estimator of 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ :

ො𝑣 𝑆 =
σ𝑘=1
𝑛 𝑤𝑆 𝒙∗, 𝒙𝑘 𝑓(𝒙 ҧ𝑆

𝑘 , 𝒙𝑆
∗)

σ𝑘=1
𝑛 𝑤𝑆(𝒙

∗, 𝒙𝑘)

► It turns out that we re-invented the Nadaraya-Watson 

estimator (locally constant kernel estimator) aiming at 

estimating 𝐸[𝑈|𝑉=v] for 

responses 𝑢𝑖 = 𝑓 𝒙 ҧ𝑆
𝑖 , 𝒙𝑆

∗ , and covariates 𝑣𝑖 = 𝒙𝑆
𝑖 , 𝑖 = 1,… , 𝑛

► May then use a corrected AIC-criterion by Hurvich and Tsai 

(JRSS-B, 1998) to select the bandwidth parameter 𝜎.
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Categorical/mixed covariates

► How to estimate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ when 𝒙 is categorical, or 

mixed continuous/categorical
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▪ Fit a multivariate decision tree 

to 𝑼 = 𝒙 ҧ𝑆 based on 𝑽 = 𝒙𝑆 using

the training data

▪ Approximate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ by the

empirical distribution of the

training observations (𝒙 ҧ𝑆) within

the terminal node of 𝒙𝑆 = 𝒙𝑆
∗



Multivariate decision tree

► Classical decision tree algorithms like CART work only for 

univariate responses

▪ Multivariate generalizations exits

▪ CARTs are known to be biased towards splitting on 

categorical covariates with many levels

► Instead, we rely on 

Recursive partitioning/conditional inference trees 

(Hothorn et al., 2006)

▪ Decide which covariate to split on first

▪ Then decides on the splitting point for that covariate
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Conditional inference tree algorithm

► Multivariate response 𝑼, covariates 𝑉1, … , 𝑉𝑝

► Step 1: Decide whether or not to split by hypothesis testing:

𝐻0: 𝑝 𝑼 𝑉𝑗 = 𝑝 𝑼 ∀ 𝑗 vs 𝐻𝐴: 𝑝 𝑼 𝑉𝑗 ≠ 𝑝 𝑈 for some 𝑗

▪ Hypothesis test performed by permutation test using a 

summary statistic for the dependence between 𝑼 and 𝑉𝑗

▪ Stop tree building if not rejecting 𝐻0 at a level 𝛼

▪ If rejecting 𝐻0, pick the covariate with the smallest p-value.

► Step 2: Splitting criteria

▪ Maximize a two-sample discrepancy statistic

► Implemented in the R-packages party and partykit 25



Conclusion

► Individual prediction

explanation, i.e. 

explaining 𝑓 𝒙∗ for specific covariate 𝒙∗

► Not straightforward to explain even a simple linear model

► Mainly three model-agnostic methods in the literature:

▪ LIME, counterfactual explanations, Shapley values

► No grand truth when explaining predictions!

► Ignoring dependence between covariates can give

completely wrong explanations
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Want to know more?

Read our paper on arXiv

arxiv.org/abs/1903.10464

Check out our R-package 

shapr on GitHub (soon CRAN) + JOSS

github.com/NorskRegnesentral/shapr

https://arxiv.org/abs/1903.10464
https://github.com/NorskRegnesentral/shapr

