How to open the black box

Individual prediction explanation

Martin Jullum
Joint work with Kjersti Aas, Anders Løland and Annabelle Redelmeier

NTNU Statistics Seminar Trondheim, March 9th 2020

Example: Bank creates mortgage robot

Example: Bank creates mortgage robot

Why was

2

rejected a loan?

Why is this important?

The General Data Protection Regulation

- Customers may have a "right to an explanation"
- Builds trust to the "robot"

Individual prediction explanation

- NOT a general explanation of the black-box model
- $x=x^{*}$: Transaction history/covariates for

Explanation for $f\left(x^{*}\right)=70 \%$

A (mathematical) description/visualization/ characterization of how each of the covariates contributed/affected the specific prediction $f\left(x^{*}\right)=70 \%$

Explaining a simple linear model

- Model $y=f(\boldsymbol{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
- How would you explain predictions from this model?
- Explanation depends on:
- β_{1} and β_{2}
- β_{0}
- x_{1}^{*} and x_{2}^{*}
- $E\left[x_{1}\right]$ and $\mathrm{E}\left[x_{2}\right]$
- $s d\left(x_{1}\right)$ and $s d\left(x_{2}\right)$
- $\operatorname{corr}\left(x_{1}, x_{2}\right)$
- Claim: A simple linear model is only easily interpretable if x_{1} and x_{2} are independent and standardized!

Prediction explanation frameworks

- Model-specific methods:
- Deep Lift/Relevance propagation:
- TreeSHAP:

For neural networks
For tree based methods

- Model-agnostic methods:

- LIME
- Counterfactual explanations:
- Shapley values

Local linear regression
Which covariates should be altered to obtain a different decision?
Based on concepts from game theory
(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to $f(x)$ based on standardized covariates and weight determined by distance to x^{*}
- Importance score for each covariate: Coefficient from local model

LIME

(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to $f(x)$ based on standardized covariates and weight determined by distance to x^{*}
- Importance score for each covariate: Coefficient from local model

- Challenges
- Defining the distance and weight functions

LIME

(Local Interpretable Model-agnostic Explanation)

- Fits a (local) weighted linear regression model to $f(x)$ based on standardized covariates and weight determined by distance to x^{*}
- Importance score for each covariate: Coefficient from local model

- Challenges
- Defining the distance and weight functions

Kernel width - 0.1

- Direct use of local model coefficients
- 0.75
- Advantages
- Simple idea
- Easy to use

Counterfactual explanations

- What is the smallest covariate change necessary to change the prediction "significantly"?
- Optimization problem:
(Ex) $\quad \arg \min _{x 1} d\left(\boldsymbol{x}^{*}, \boldsymbol{x}^{\prime}\right)$, subject to $\left|f\left(\boldsymbol{x}^{\prime}\right)-\left[f\left(\boldsymbol{x}^{*}\right)+\lambda\right]\right| \leq \varepsilon$
- Explanation: Minimizers of (Ex)
- Challenges:
- Choosing d, λ and ε
- May lead to many sub-explanations
- Advantages
- Cannot be wrong
- Guides user on how to change prediction
- Need to interpret the explanations yourself

Shapley values

- Concept from (cooperative) game theory in the 1950s
- Used to distribute the total payoff to the players
- Explicit formula for the "fair" payment to every player j :

$$
\phi_{j}=\sum_{S \subseteq M \backslash\{j\}} w(S)(v(S \cup\{j\})-v(S)), \quad w(S) \text { is a weight function }
$$

$v(S)$ is the payoff with only players in subset

- Several mathematical optimality properties

Intuition behind the Shapley formula

Game with 3 players

Shapley values for prediction explanation

- Players = covariates $\left(x_{1}, \ldots, x_{M}\right)$
- Payoff $=$ prediction $\left(f\left(x^{*}\right)\right)$
- Contribution function: $v(S)=E\left[f(x) \mid x_{S}=x_{S}^{*}\right]$
- Properties

$f\left(x^{*}\right)=\sum_{j=0}^{M} \phi_{j}$

$$
\phi_{0}=E[f(\boldsymbol{x})]
$$

$E[f(\boldsymbol{x})]=E\left[f(\boldsymbol{x}) \mid x_{j}\right]$
implies $\phi_{j}=0$
x_{i}, x_{j} same contribution implies $\phi_{i}=\phi_{j}$

- Rough interpretation of ϕ_{j} : The prediction change when you don't know the value of x_{j}-- averaged over all covariates

Shapley values for prediction explanation

- 2 main challenges

1. The computational complexity in the Shapley formula

$$
\phi_{j}=\sum_{S \subseteq M \backslash\{j} w(S)(v(S \cup\{j\})-v(S))
$$

- Partly solved by cleverly reducing the sum by subset sampling (KernelSHAP; Lundberg \& Lee, 2017)

Shapley values for prediction explanation

- 2 main challenges

2. Estimating the contribution function

Recall

$$
v(S)=E\left[f(\boldsymbol{x}) \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right]=\int f\left(\boldsymbol{x}_{\bar{S}}, \boldsymbol{x}_{S}\right) p\left(x_{\bar{S}} \mid x_{S}=x_{S}^{*}\right) \mathrm{d} \boldsymbol{x}_{\bar{S}}
$$

- Previous methods

Approximates $v(S) \approx \int f\left(\boldsymbol{x}_{\bar{S}}, \boldsymbol{x}_{S}^{*}\right) p\left(x_{\bar{S}}\right) \mathrm{d} \boldsymbol{x}_{\bar{S}}$,
Estimates $p\left(x_{\bar{s}}\right)$ using the empirical distribution of the training data

- Monte Carlo integration to solve the integral

This assumes covariates are independent!

Consequences of the independence assumption

- Requires evaluating $f\left(x_{\bar{S}}, x_{S}\right)$ at potentially unlikely or illegal combinations of $x_{\bar{S}}$ and x_{S}
- Example 1
- Number of transactions to Switzerland: 0
- Average transaction amount to Switzerland: 1000 NOK

- Example 2
- Age: 17
- Marital status: Widow
- Profession: Professor

Shapley values for prediction explanation

- Explicit formula for a linear model $f(\boldsymbol{x})=\beta_{0}+\sum_{j=1}^{M} \beta_{j} x_{j}$ with independent covariates:

$$
\phi_{0}=\beta_{0}+\sum_{j=1}^{M} \beta_{j} E\left[x_{j}\right], \quad \phi_{j}=\beta_{j}\left(x_{j}^{*}-E\left[x_{j}\right]\right), j=1, \ldots, M
$$

- Advantages
- Proper mathematical foundation
- Desirable set of properties
- Challanges
- Computationally heavy
- Requires good estimates of a difficult estimation problem:

$$
E\left[f(x) \mid x_{S}=x_{S}^{*}\right]
$$

- From our perspective the method with greatest potential - what we have work with the last two years

Our idea

Estimate $p\left(\boldsymbol{x}_{\bar{S}} \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right)$ properly

$+$
Monte Carlo integration to approximate

$$
v(S)=E\left[f(\boldsymbol{x}) \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right]=\int f\left(\boldsymbol{x}_{\bar{S}}, \boldsymbol{x}_{S}\right) p\left(x_{\bar{S}} \mid x_{S}=x_{S}^{*}\right) \mathrm{d} \boldsymbol{x}_{\bar{S}}
$$

Continuous covariates

- How to estimate $p\left(\boldsymbol{x}_{\bar{S}} \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right)$ when \boldsymbol{x} is continuous?
- 3 approaches
- Assume $p(\boldsymbol{x})$ Gaussian => analytical $p\left(\boldsymbol{x}_{\bar{S}} \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right)$
- Assume Gaussian copula => transformation + analytical expression
- An empirical (conditional) approach where training observations at $x_{\bar{S}}^{i}$ are weighted based on proximity of \boldsymbol{x}_{S}^{i} to x_{S}^{*}

Empirical conditional approach

1. Compute the scaled Mahalanobis distance between \boldsymbol{x}_{S}^{*} and the columns S of the training data $x^{1}, \ldots x^{n}$

$$
D_{\mathcal{S}}\left(x^{*}, x^{i}\right)=\sqrt{\frac{\left(x_{\mathcal{S}}^{*}-x_{\mathcal{S}}^{i}\right)^{T} \Sigma_{\mathcal{S}}^{-1}\left(x_{\mathcal{S}}^{*}-x_{\mathcal{S}}^{i}\right)}{|\mathcal{S}|}}
$$

2. Use Gaussian kernel to get weight of each training observation:

$$
w_{\mathcal{S}}\left(\boldsymbol{x}^{*}, \boldsymbol{x}^{i}\right)=\exp \left(-\frac{D_{\mathcal{S}}\left(\boldsymbol{x}^{*}, \boldsymbol{x}^{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

3. Approximate $p\left(x_{\bar{S}} \mid x_{S}=\boldsymbol{x}_{S}^{*}\right)$ by the probability mass function where $p\left(\boldsymbol{x}_{\bar{S}}=x^{i} \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right)=\frac{w_{S}\left(\boldsymbol{x}^{*}, x^{i}\right)}{\sum_{k=1}^{n} w_{S}\left(\boldsymbol{x}^{*}, x^{k}\right)}$

Empirical conditional approach II

- This gives an estimator of $E\left[f(x) \mid x_{S}=x_{S}^{*}\right]$:

$$
\hat{v}(S)=\frac{\sum_{k=1}^{n} w_{S}\left(\boldsymbol{x}^{*}, \boldsymbol{x}^{k}\right) f\left(\boldsymbol{x}_{S}^{k}, \boldsymbol{x}_{S}^{*}\right)}{\sum_{k=1}^{n} w_{S}\left(\boldsymbol{x}^{*}, \boldsymbol{x}^{k}\right)}
$$

- It turns out that we re-invented the Nadaraya-Watson estimator (locally constant kernel estimator) aiming at estimating $E[U \mid V=\mathrm{v}]$ for responses $u_{i}=f\left(\boldsymbol{x}_{\bar{S}}^{i}, \boldsymbol{x}_{S}^{*}\right)$, and covariates $v_{i}=\boldsymbol{x}_{S}^{i}, i=1, \ldots, n$
- May then use a corrected AIC-criterion by Hurvich and Tsai (JRSS-B, 1998) to select the bandwidth parameter σ.

Categorical/mixed covariates

- How to estimate $p\left(\boldsymbol{x}_{\bar{S}} \mid \boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{*}\right)$ when \boldsymbol{x} is categorical, or mixed continuous/categorical
- Fit a multivariate decision tree to $U=x_{\bar{S}}$ based on $V=x_{S}$ using the training data
- Approximate $p\left(x_{\bar{S}} \mid x_{S}=x_{S}^{*}\right)$ by the empirical distribution of the training observations ($x_{\bar{s}}$) within the terminal node of $x_{S}=x_{S}^{*}$

Multivariate decision tree

- Classical decision tree algorithms like CART work only for univariate responses
- Multivariate generalizations exits
- CARTs are known to be biased towards splitting on categorical covariates with many levels
- Instead, we rely on

Recursive partitioning/conditional inference trees
(Hothorn et al., 2006)

- Decide which covariate to split on first
- Then decides on the splitting point for that covariate

Conditional inference tree algorithm

- Multivariate response \boldsymbol{U}, covariates V_{1}, \ldots, V_{p}
- Step 1: Decide whether or not to split by hypothesis testing:

$$
H_{0}: p\left(\boldsymbol{U} \mid V_{j}\right)=p(\boldsymbol{U}) \forall j \text { vs } H_{A}: p\left(\boldsymbol{U} \mid V_{j}\right) \neq p(U) \text { for some } j
$$

- Hypothesis test performed by permutation test using a summary statistic for the dependence between \boldsymbol{U} and V_{j}
- Stop tree building if not rejecting H_{0} at a level α
- If rejecting H_{0}, pick the covariate with the smallest p-value.
- Step 2: Splitting criteria
- Maximize a two-sample discrepancy statistic
- Implemented in the R-packages party and partykit

Conclusion

- Individual prediction explanation, i.e. explaining $f\left(\boldsymbol{x}^{*}\right)$ for specific covariate \boldsymbol{x}^{*}
- Not straightforward to explain even a simple linear model
- Mainly three model-agnostic methods in the literature:
- LIME, counterfactual explanations, Shapley values
- No grand truth when explaining predictions!
- Ignoring dependence between covariates can give completely wrong explanations

Want to know more?

Read our paper on arXiv arxiv.org/abs/1903.10464

Check out our R-package shapr on GitHub (soon CRAN) + JOSS github.com/NorskRegnesentral/shapr

