

Opening the black box

Individual prediction explanation

Martin Jullum

Big Insight Day 2019 Oslo, November 14th 2019

The rest of the team at NR

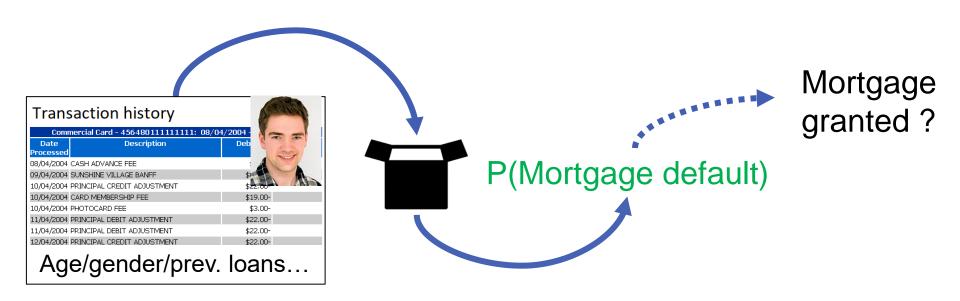
Example: Bank creates mortgage robot

Transaction history

Commercial Card - 456480111111111: 08/04/2004 - 14/04/2004			
Date Processed	Description	Debit	Credit
08/04/2004	CASH ADVANCE FEE	\$5.00-	
09/04/2004	SUNSHINE VILLAGE BANFF	\$86.97-	
10/04/2004	PRINCIPAL CREDIT ADJUSTMENT	\$22.00-	
10/04/2004	CARD MEMBERSHIP FEE	\$19.00-	
10/04/2004	PHOTOCARD FEE	\$3.00-	
11/04/2004	PRINCIPAL DEBIT ADJUSTMENT	\$22.00-	
11/04/2004	PRINCIPAL DEBIT ADJUSTMENT	\$22.00-	
12/04/2004	PRINCIPAL CREDIT ADJUSTMENT	\$22.00-	
Ago/gondor/prov/loopo			

Age/gender/prev. loans...

Example: Bank creates mortgage robot



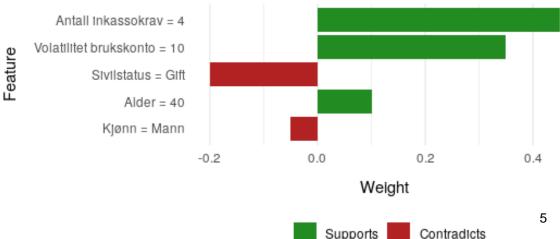
 $x \longrightarrow f(x) \longrightarrow p = 0.7$

Individual prediction explanation

- NOT a general explanation of the black-box model
- $x = x^*$: Transaction history/covariates for

Explanation for $f(\mathbf{x}^*) = 70\%$

Which covariates "contributed the most" to increase/decrease the prediction to exactly f(x*)=70%?



Why is this important?

- Customers may have a "right to an explanation"
- Also builds trust to the "robot"

Prediction explanation in general

- Assume we have trained a statistical or machine learning model to describe a response variable Y based on a set of covariates x = (x₁, ..., x_p), *i.e*:
 Y ≈ f(x)
- f applied to predict Y for a new set of covariates $x = x^*$

• Want explain the prediction by translating $f(\mathbf{x}^*)$ to scores ϕ_1, \dots, ϕ_p representing the contribution of the covariates \mathbf{x}^*

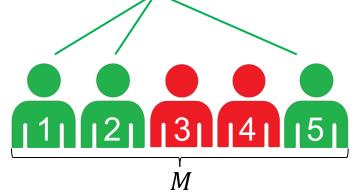
Shapley values

- Concept from (cooperative) game theory in the 1950s
- Used to distribute the total payoff to the players
- Explicit formula for the "fair" payment to every player j:

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right), \quad w(S) \text{ is a weight function}$$

v(S) is the payoff with only players in subset S

 Several mathematical optimality properties

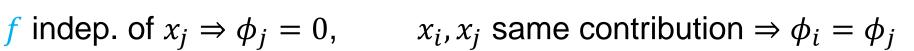


Intuition behind the Shapley formula Game with 3 players 131

Shapley values for prediction explanation

- Players = covariates (x_1, \dots, x_n)
- Payoff = prediction $(f(\mathbf{x}^*))$
- Contribution function: $v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*]$
- **Properties**

$$f(\mathbf{x}^*) = \sum_{j=0}^p \phi_j \qquad \phi_0 = E[f(\mathbf{x})]$$



 \boldsymbol{x}_S

• Rough interpretation of ϕ_i : How does the prediction change when you don't know the value of x_i

Х

Shapley values for prediction explanation

► 2 main challenges

1. The computational complexity in the Shapley formula

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right)$$

 Partly solved by cleverly reducing the sum by subset sampling (KernelSHAP; Lundberg & Lee, 2017)

Shapley values for prediction explanation

2 main challenges

2. Estimating the contribution function

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) \mathrm{d}\mathbf{x}_{\bar{S}}$$

- Previous methods
 - Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{\bar{S}}^*) \mathbf{p}(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
 - Estimates $p(x_{\bar{s}})$ using the empirical distribution of the training data
 - Monte Carlo integration to solve the integral This assumes covariates are independent!

X

Recall

Consequences of the independence assumption

- ► Requires evaluating $f(x_{\bar{s}}, x_{\bar{s}})$ at potentially <u>unlikely or</u> <u>illegal</u> combinations of $x_{\bar{s}}$ and $x_{\bar{s}}$
- Example 1
 - Number of transactions to Switzerland: 0
 - Average transaction amount to Switzerland: 1000 NOK

- ► Example 2
 - Age: 17
 - Marital status: Widow
 - Profession: Professor

Our idea

Estimate $p(x_{\bar{S}} | x_S = x_S^*)$ properly +

Monte Carlo integration

Our contribution: continuous variables

- ► 3 approaches for estimating $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$
 - Assume $p(\mathbf{x})$ Gaussian => analytical $p(\mathbf{x}_{\bar{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$
 - Assume Gaussian copula => transformation + analytical expression
 - An empirical (conditional) approach where training observations at x^k_S are weighted by proximity of x^k_S to x^{*}_S

BIG improvements in simulation studies

Explaining sick leave predictions / 1997//

- NAV is modelling how long individuals are on sick leave
 - Used by case workers to schedule follow-up meetings
- Case workers need to understand the "reasoning" of the individual predictions
- Modelling based on
 - age, gender, sick leave history, type of business etc.
 - Several categorical variables with many levels
- Need methodology for prediction explanation which can handle categorical variables

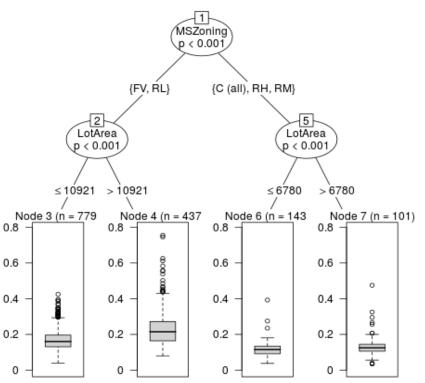
Our idea

Estimate $p(x_{\bar{S}} | x_S = x_S^*)$ properly +

Monte Carlo integration

Our contribution: categorical/mixed variables

- Estimating $p(\mathbf{x}_{\overline{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$
 - For every subset *S*, fit a
 (multivariate) regression tree
 to y = x_s based on x_s using
 the training data
 - Approximate $p(\mathbf{x}_{\overline{S}} | \mathbf{x}_{S} = \mathbf{x}_{S}^{*})$ by the empirical distribution of the training observations $(\mathbf{x}_{\overline{S}})$ within the terminal node of $\mathbf{x}_{S} = \mathbf{x}_{S}^{*}$



Want to know more?

Read our paper on arXiv arxiv.org/abs/1903.10464

Check out our R-package *shapr* on Github <u>github.com/NorskRegnesentral/shapr</u>

Talk to any of us

