
www.nr.no

Boosted decision trees
From a single tree to an XGBoost model

Martin Jullum

Insurance company Feb 4th 2019

Problem setup

► Assume with have a training data set of size 𝑛

▪ Response: 𝑦𝑖

▪ Covariates: 𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑝
⊤
, 𝑖 = 1,…𝑛

► Want to train a model 𝑓 on these data such that 𝑓(𝑥𝑖)
approximates 𝑦𝑖 as well as possible (on a seperate test data

set!) in terms of a loss function 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

2

Tree models (I)

► Conceptually the simplest statistical model existing!

▪ The function is evaluated by a series of conditional IF-ELSE rules

▪ As a tree: Start at the root and work your way through the branches

depending on your covariate values, ending up at the leaves

3
Trained tree model for survival rate on Titanic

Tree models (II)

► May be written as a weighted sum of indicator values over the

regions

𝑓(𝑥) =

𝑗=1

𝑇

𝜃𝑗 1{𝑥 ∈ 𝑅𝑗} 4

3 visualizations of the same tree model

Training a tree model

5

► Computationally intractable to find the best partitioning w.r.t. general

𝐿 𝑦𝑖 , 𝑓 𝑥𝑖
▪ Use a greedy algorithm, which iteratively grows the tree

► Algorithm:

▪ For each leaf node 𝑅𝑗 , 𝑗 = 1,…, in the current tree DO:

◦ For each covariate 𝑥𝑗, find the split point corresponding to new potential

regions 𝑅1𝑗 , 𝑅2𝑗 minimizing the split loss

σ𝑖∈𝑅𝑗
[𝐿 𝑦𝑖 , ො𝑦𝑅1𝑗 + 𝐿 𝑦𝑖 , ො𝑦𝑅2𝑗] (*)

where ො𝑦𝑅𝑘𝑗 = argmin𝑐 σ𝑖∈𝑅𝑘𝑗
𝐿(𝑦𝑖 , 𝑐).

▪ Choose the leaf node, covariate and split point with smallest split loss

▪ Perform the split if loss reduction is large enough in terms of e.g.

previous loss reductions, depth, number of nodes, etc.

▪ REPEAT

Properties of tree models

► Benefits

▪ Models non-linearities and interactions directly

▪ Invariant under monotone transformations of the covariates

▪ Easy to train – scales well to large data sets

▪ Naturally combines continuous and categorical data

▪ Easy to explain and interpret

▪ Can handle missing data

▪ Robust to outliers in the covariates

► Drawbacks

▪ Limited predictive power

▪ High variance

▪ Somewhat arbitrary handling of overfitting/regularization

▪ Lack smoothness
6

Bagging and random forest

► Bagging = Bootstrap aggregating, Breiman (1994)

▪ Model ensamble technique used to improve the predictive power of

single models by averaging models fitted to independent

bootstrapped samples of the training data

መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵

𝑏=1

𝐵
መ𝑓∗𝑏(𝑥)

▪ Prefers low bias – high variance type models

► Random Forest, Breiman (2001)

▪ Bagging with tree models

▪ Often 100-1000 typically deep models

▪ Extra trick to decrease correlation among trees:

◦ For every split ,sample a few variables that are allowed to make the split

7

Boosting: The principle

► Kearns (1988) asked whether a set of weak learners could be

combined into a strong learner

► Freund and Schapire (1997): YES, with AdaBoost

► AdaBoost idea

▪ Iteratively fit simple models 𝑓𝑚(𝑥) (weak learners) trying to correct

«mistakes» of previous models

▪ Combine them additively into a model ensamble with good

predictive performance (strong learner)

𝑓 𝑀 (𝑥) =

𝑚=1

𝑀

𝑓𝑚(𝑥)

8

Example Adaboost

9

Adaboost as FSAM

► Friedman et al. (2000): Adaboost is equivalent to Forward

Stagewise Additive Modelling (FSAM) with the loss function:

𝐿 𝑦, 𝑓(𝑥) = exp(−𝑦𝑓(𝑥))

► FSAM: For 𝑚 = 1,… , 𝑀, find model 𝑓𝑚 by minimizing the

empirical risk

𝑓𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈Φ

1

𝑛

𝑖=1

𝑛

𝐿(𝑦𝑖 , 𝑓
𝑚−1 (𝑥𝑖) + ℎ 𝑥𝑖)

▪ 𝑓 𝑚−1 𝑥 = σ𝑗=1
𝑚−1𝑓𝑗 𝑥 ,with f 0 𝑥 = 0

▪ For some model class Φ

► A very general procedure, but hard to do for general loss

function

10

Gradient boosting
► Gradient descent

▪ Iterative procedure for finding minimum

of (multivariate) function 𝑠(𝑧)

▪ Iteratively take steps along the

negative gradient: 𝑧𝑚 = 𝑧𝑚−1 − 𝜌𝑚𝑠′(𝑧𝑚−1)

► Gradient boosting (Friedman (2001))

▪ Notation: Let 𝑠𝑖 𝑧 = L 𝑦𝑖 , 𝑧

▪ Take a gradient descent step towards the minimum of 𝑠𝑖, at z =

𝑓 𝑚−1 𝑥𝑖 for all 𝑖

▪ Class restriction solved by using the function closest in L2 to the

negative gradient: 𝑓𝑚,0 = 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈Φ

σ𝑖=1
𝑛 [−𝑠𝑖′(𝑓

𝑚−1 𝑥𝑖) −ℎ 𝑥𝑖]
2

For Φ = Tree models, the green «loss» is fed to the tree learner (*)

▪ The step length: 𝜌𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜌

σ𝑖=1
𝑛 𝐿 𝑦𝑖 , 𝑓

𝑚−1 𝑥𝑖 + 𝜌𝑓𝑚,0 𝑥𝑖 ,

▪ Finally: 𝑓𝑚 𝑥 = 𝛾𝜌𝑚 𝑓𝑚,0 𝑥 , for some pre-set learning rate 𝛾 ∈ (0,1]

▪ This is the most common boosting method, e.g. gbm package in R 11

2. order approximation

► Approximate L 𝑦𝑖 , 𝑓
𝑚−1 (𝑥𝑖) + ℎ 𝑥𝑖 , using a 2. order Taylor

approximation of 𝑠𝑖 𝑧 around 𝑧 = 𝑓 𝑚−1 (𝑥𝑖)

► 𝑠∗ 𝑓 𝑚−1 𝑥𝑖 + ℎ 𝑥𝑖 =

𝑠𝑖 𝑓 𝑚−1 𝑥𝑖 + 𝑠𝑖 ’ 𝑓 𝑚−1 𝑥𝑖 ℎ(𝑥𝑖) +
1

2
𝑠𝑖′’ 𝑓 𝑚−1 𝑥𝑖 ℎ(𝑥𝑖)

2

► Inserting this into the FSAM solution gives

𝑓𝑚,0 = 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈Φ

𝑖=1

𝑛

[𝑠∗(𝑓 𝑚−1 𝑥𝑖 + ℎ(𝑥𝑖))]

= 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈Φ

σ𝑖=1
𝑛 [𝑠𝑖 ’ 𝑓 𝑚−1 𝑥𝑖 ℎ 𝑥𝑖 +

1

2
𝑠𝑖
′ ′ 𝑓 𝑚−1 𝑥𝑖 ℎ 𝑥𝑖

2]

= 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈Φ

σ𝑖=1
𝑛 1

2
𝑠′′(𝑓 𝑚−1 𝑥𝑖)[−

𝑠′ 𝑓 𝑚−1 𝑥𝑖

𝑠′′ 𝑓 𝑚−1 𝑥𝑖
− ℎ(𝑥𝑖)]

2

► For Φ = Tree models, the green «loss» is fed to the tree learner (*)

► Finally: 𝑓𝑚(𝑥) = 𝛾 𝑓𝑚,0(𝑥), for some pre-set learning rate 𝛾

► This is the method used by XGBoost, with Φ being tree models
12

Bagging vs. boosting with tree models

► Bagging

▪ Combines models attempting to reduce the overall variance

▪ 𝑉𝑎𝑟(
1

2
(𝑋 + 𝑌)) =

1

4
𝑉𝑎𝑟(𝑋) +

1

4
𝑉𝑎𝑟(𝑌) +

1

2
𝐶𝑜𝑣(𝑋, 𝑌)

▪ Suitable to combine models with low bias (+ high variance)

▪ Trains independent models – easy to parallelize

► Boosting

▪ Combines models attempting to reduce the overall bias (weak

learner -> strong learner)

▪ Suitale to combine models with low variance (+ high bias)

▪ Trains dependent models – sequentially

► Bagging less senstive to parameter choices than boosting

► Deep (bagging) and shallow (boosting) tree models are suitable

due to mentioned benefits

▪ Drawbacks of tree models are reduced by ensambling
13

XGBoost = eXtreme Gradient Boosting

► A machine learning library built around an efficient implementation

of boosting for tree models (like GBM)

▪ Developed by Tianqi Chen (Uni. Washington) i 2014

► Core library in C++, with interfaces for many languages/platforms

▪ C++, Python, R, Julia, Java, etc.

▪ Distributed version for Hadoop + Spark

► Engineering goal: “Push the limit of computational resources for

boosted tree algorithms”

▪ Parallelizable, cheap on memory, scales to large data sets

► Very powerful and flexible – lots of (hyper)parameters

► Huge succsess

▪ «Winning practically every prediction competiton on Kaggle»

14

XGBoost – methodological improvements

► Tree boosting inherits most benefits and fixes the drawbacks of

individual tree models

► 2. order approx. to FSAM – more precise than regular gradient

boosting

► Introduced regularization directly in the tree growing procedure

▪ Actually tries to minimize, L 𝑦𝑖 , 𝑓
𝑚−1 (𝑥𝑖) + ℎ 𝑥𝑖 + Ω ℎ ,

▪ Ω ℎ = 𝛾T +
1

2
𝜆σ𝑗

𝑇𝑤𝑗
2 + 𝛼σ𝑗

𝑇 |𝑤𝑗|, for 𝑤𝑗 the leaft values of tree of

depth T

▪ Also other regularization parameters available

► Subsampling of both rows and columns of covariate matrix

available for better generalization properties

15

XGBoost – technical improvements

► Very fast and cheap on memory

▪ Store data in internal sparsity aware format – memory friendly

▪ The tree learning algorithm utilizes the sparse structure

▪ Parallelizes tree learning per covariate

▪ Example: n=2*10^6, p=200, Y={0,1}, depth=6, 150sec with 16

threads, a few GB of RAM consumption.

► Allows the user to view the performance of the current

model during training

► Can automatically stop boosting when performance on

spearate (cross) validation set decreases

► User can set custom loss function and evaluation metric for

stopping

► Implemented direct handling of missing values – learning a

default direction for NA
16

XGBoost – community contributions

► DART (Dropout Additive Regression Trees) (Feb 2016)

▪ Drop given proportion of trained trees when learning a new tree

▪ More randomization -> link to random forest

► Histogram approach (Jan 2017)

▪ Discretize continuous covariates into default bins for faster

training, 4-10 times faster

► GPU version (Aug 2017)

▪ 2-4 times faster than histogram approach on CPU

► Covariate contribution per prediction supported natively by

SHAP (Oct 2017)

► Monotonic constraints (Jan 2018) and feature interaction

constraints (Nov 2018)
17

XGBoost – Remarks
► Competitors

▪ LightGBM (Microsoft)

◦ Very similar, not as mature and feature rich

◦ Has pushed the development of XGBoost

◦ Still slightly faster than XGBoost?

▪ CatBoost (Yandex, “Russian Google”)

◦ Also similar, but handles categorical variables directly

◦ Was much slower, but has improved a lot

► XGBoost can be called from caret, h2o R-packages + scikit-

learn in Python

► I have still not seen an example where Random Forest

outperforms a tuned XGBoost model!

► Main disadvantage? «Hard» to fit optimal model with many

hyperparameters
18

Key resources

► Didrik Nielsen, Master thesis NTNU, 2016:

https://brage.bibsys.no/xmlui/handle/11250/2433761

► Chen & Guestrin (2016), XGBoost: A Scalable Tree Boosting

System: https://arxiv.org/abs/1603.02754

► Hastie et al. (2009), Elements of Statistical Learning, Ch 9.2 + 10

► XGBoost Github: https://github.com/dmlc/xgboost

► XGBoost documentation: http://xgboost.readthedocs.io

► Slides from Meetup in LA with Tianqi Chen:

http://datascience.la/xgboost-workshop-and-meetup-talk-with-

tianqi-chen/

19

https://brage.bibsys.no/xmlui/handle/11250/2433761
https://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
http://xgboost.readthedocs.io/
http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/

