A
e NOTFsk
w = Regnesentral
‘ NORWEGIAN COMPUTING CENTER

Boosted decision trees

From a single tree to an XGBoost model

Martin Jullum

Insurance company Feb 4th 2019

Problem setup

» Assume with have a training data set of size n
= Response: y;

. T,
= Covariates: x; = (X1, ., Xip) ,i=1,..1m

» Want to train a model f on these data such that f(x;)

approximates y; as well as possible (on a seperate test data
set!) in terms of a loss function L(y;, f(x;))

i

Tree models (I)

» Conceptually the simplest statistical model existing!
= The function is evaluated by a series of conditional IF-ELSE rules

= As atree: Start at the root and work your way through the branches
depending on your covariate values, ending up at the leaves

- \{//(
.\k_\f.’\“\f" \\{E

Were you...
— T~ "_;‘\\ / - ~—_
Male?
Yes No
An adult? In 3™ class?
Yes \No Yes No
In 374 class?
Yesl lNo

3% 27% 100% 46% 93% Survival Rate
=~ ¥ Y Q@ 9 Q
——
“—— 3

- Trained tree model for survival rate on Titanic

Tree models (Il)

2
< ig
R Ro Rs3 Ry
th t3

3 visualizations of the same tree model

» May be written as a weighted sum of indicator values over the
regions

T
NRES FO) =) 6 1gen,
j=1

i

Training a tree model

Computationally intractable to find the best partitioning w.r.t. general
L(yi f(x)

= Use a greedy algorithm, which iteratively grows the tree

Algorithm:
- Foreachleafnode R;,j = 1, ..., In the current tree DO:

> For each covariate x;, find the split point corresponding to new potential
regions R, j, R;; minimizing the split loss

Sier,[L (¥i9ry;) + L (v 9k,)] (*)
where Yr,; = argming ZiERkj L(y;, ©).

= Choose the leaf node, covariate and split point with smallest split loss

= Perform the split if loss reduction is large enough in terms of e.g.
previous loss reductions, depth, number of nodes, etc.

= REPEAT

Properties of tree models

>

i

Benefits

Models non-linearities and interactions directly

Invariant under monotone transformations of the covariates
Easy to train — scales well to large data sets

Naturally combines continuous and categorical data

Easy to explain and interpret

Can handle missing data

Robust to outliers in the covariates

Drawbacks

Limited predictive power

High variance

Somewhat arbitrary handling of overfitting/regularization
Lack smoothness

Bagging and random forest

» Bagging = Bootstrap aggregating, Breiman (1994)

= Model ensamble technique used to improve the predictive power of
single models by averaging models fitted to independent

bootstrapped samples of the training data
B

A 1 A
frag) =5 > fP@)

b=1
= Prefers low bias — high variance type models

» Random Forest, Breiman (2001)
= Bagging with tree models

= Often 100-1000 typically deep models

= Extra trick to decrease correlation among trees:
For every split ,sample a few variables that are allowed to make the split

m--
= 7

i

Boosting: The principle

» Kearns (1988) asked whether a set of weak learners could be
combined into a strong learner

» Freund and Schapire (1997): YES, with AdaBoost

» AdaBoost idea

lteratively fit simple models f,,,(x) (weak learners) trying to correct
«mistakes» of previous models

Combine them additively into a model ensamble with good
predictive performance (strong learner)
M

FONG) =) fu(0)
m=1

i

Example Adaboost

Adaboost as FSAM

» Friedman et al. (2000): Adaboost is equivalent to Forward

Stagewise Additive Modelling (FSAM) with the loss function:

Ly, f(x)) = exp(=yf(x))

» FSAM: For m =1,..., M, find model f,,, by minimizing the
empirical risk

1
fm = argmin—
hed n

> Lo fmD) + hx)
i=1

FOm=D(x) = ¥MAL £(x), with £© (x) = 0
For some model class &

» A very general procedure, but hard to do for general loss
function

m
——
o

10

/ / / / _— ——---.__H’ H\Q\\
. . , f.. I f;z, //,f - 'H\ .
Gradient boosting 11177 NN\
» Gradient descent | "" |"" |"" |)
= lterative procedure for finding minimum | | | | l'-. o
of (multivariate) function s(z) VLAV O\
= lteratively take steps along the WA\ — S/,
negative gradient: z,, = z,,,_1 — PmS (Zm— 1) \ X(‘— / p
%0 k - H‘“m,_____ ——-""-f"f‘.f,«*"x/ /,'
» Gradient boosting (Friedman (2001)) \\3“"~~-~---__----f--*”
= Notation: Let s;(z) = L(y;, z) \:"“""-———--"“"" ,
= Take a gradient descent step towards the minimum of s;, at z =
Fm=1(x,) for all i
= Class restriction solved by using the function closest in L2 to the
negative gradient: f,,, o = argzlelg}: =" (F D (x)) —h(x;)]?
For ® = Tree models, the green «loss» is fed to the tree learner (*)
+ The step length: pr, = argmin Ty L (v, f ™2 () + pfino (),
= Finally: f,,(x) = vom fino (x), for some pre-set learning rate y € (0,1]

This is the most common boosting method, e.g. gbm package in R ;;

2. order approximation

>

Approximate L (yi,f(m‘l) (x;) + h(xl-)), using a 2. order Taylor
approximation of s;(z) around z = f™ D (x,)
s*(FIm D) + h(x)) =
1
s (Fm0GD) + s (FMVGD) hex) + 57 (V@) A)
Inserting this into the FSAM solution gives

frno = argmin > [s"(F™ D () + h(xp)
=1

= argmin Y14 [s;’ (f(m‘l)(xi)) h(x;) + %S{ ’ (f(m_l) (xi)) h(x;)?]

hed (:))
s'(FM P () 5
S”(f(m_l)(xi)) B h(xl)]

. . n 1 nmeem-1)(. —
= arg%lgzlﬂzs (f e)|

For ® = Tree models, the green «loss» is fed to the tree learner (*)

Finally: f,,(x) =y fino(x), for some pre-set learning rate y

12

This is the method used by XGBoost, with @ being tree models

Bagging vs. boosting with tree models

>

Bagging

= Combines models attempting to reduce the overall variance
VarG (X +Y)) =sVar(X) +Var(Y) +Cov(X,Y)

= Suitable to combine models with low bias (+ high variance)

= Trains independent models — easy to parallelize

Boosting

= Combines models attempting to reduce the overall bias (weak
learner -> strong learner)

= Suitale to combine models with low variance (+ high bias)
» Trains dependent models — sequentially

Bagging less senstive to parameter choices than boosting

Deep (bagging) and shallow (boosting) tree models are suitable
due to mentioned benefits

 Drawbacks of tree models are reduced by ensambling

13

XGBoost = eXtreme Gradient Boosting

» A machine learning library built around an efficient implementation
of boosting for tree models (like GBM)

= Developed by Tiangi Chen (Uni. Washington) i 2014

» Core library in C++, with interfaces for many languages/platforms
= C++, Python, R, Julia, Java, etc.
= Distributed version for Hadoop + Spark

» Engineering goal: “Push the limit of computational resources for
boosted tree algorithms”

= Parallelizable, cheap on memory, scales to large data sets
» Very powerful and flexible — lots of (hyper)parameters

» Huge succsess
= «Winning practically every prediction competiton on Kaggle»

m*

i

XGBoost — methodological improvements

» Tree boosting inherits most benefits and fixes the drawbacks of
iIndividual tree models

» 2. order approx. to FSAM — more precise than regular gradient
boosting

» Introduced regularization directly in the tree growing procedure
« Actually tries to minimize, L (yi,f(m‘l) (x;) + h(xi)) + Q(h),

Q(h) =yT + %AZJT- wi +a X |w;|, for w; the leaft values of tree of
depth T
= Also other regularization parameters available

» Subsampling of both rows and columns of covariate matrix
available for better generalization properties

z 3
m*

XGBoost —technical improvements

» Very fast and cheap on memory
= Store data in internal sparsity aware format — memory friendly
» The tree learning algorithm utilizes the sparse structure
= Parallelizes tree learning per covariate

= Example: n=2*10"6, p=200, Y={0,1}, depth=6, 150sec with 16
threads, a few GB of RAM consumption.

» Allows the user to view the performance of the current
model during training

» Can automatically stop boosting when performance on
Spearate (cross) validation set decreases

» User can set custom loss function and evaluation metric for
stopping

» Implemented direct handling of missing values — learning a
default direction for NA

16

XGBoost — community contributions

» DART (Dropout Additive Regression Trees) (Feb 2016)
Drop given proportion of trained trees when learning a new tree
More randomization -> link to random forest

» Histogram approach (Jan 2017)

Discretize continuous covariates into default bins for faster
training, 4-10 times faster

» GPU version (Aug 2017)
2-4 times faster than histogram approach on CPU

» Covariate contribution per prediction supported natively by
SHAP (Oct 2017)

» Monotonic constraints (Jan 2018) and feature interaction
constraints (Nov 2018)

17

XGBoost — Remarks

» Competitors

= LightGBM (Microsoft)
o Very similar, not as mature and feature rich
o Has pushed the development of XGBoost
o Still slightly faster than XGBoost?
= CatBoost (Yandex, “Russian Google”)
o Also similar, but handles categorical variables directly
o Was much slower, but has improved a lot

» XGBoost can be called from caret, h2o0 R-packages + scikit-
learn in Python

» | have still not seen an example where Random Forest
outperforms a tuned XGBoost model!

» Main disadvantage? «Hard» to fit optimal model with many
hyperparameters

18

Key resources

>

v v v Vv

Didrik Nielsen, Master thesis NTNU, 2016:
https://brage.bibsys.no/xmlui/handle/11250/2433761

Chen & Guestrin (2016), XGBoost: A Scalable Tree Boosting
System: https://arxiv.org/abs/1603.02754

Hastie et al. (2009), Elements of Statistical Learning, Ch 9.2 + 10

XGBoost Github: https://github.com/dmlic/xgboost

XGBoost documentation: http://xgboost.readthedocs.io

Slides from Meetup in LA with Tiangi Chen:
http://datascience.la/xgboost-workshop-and-meetup-talk-with-
tianqgi-chen/

i

m*

https://brage.bibsys.no/xmlui/handle/11250/2433761
https://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
http://xgboost.readthedocs.io/
http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/

