
www.nr.no

Shapley Value Explanations,
Comparison with LIME 
&
Our work

Martin Jullum



Shapley values

► Originating from cooperative game theory

Shapley (1953)

► Used to distribute payments to players based

on their contribution

► Shapley value for a player = the “fair” payment that player  

should get

► Has an explicit mathematical formula

► Several nice optimality properties in terms of fairness

2

Lloyd S. Shapley

Nobel Price Winner in 

Economics, 2012.



Shapley values for prediction 
explanation 

► Idea for use in prediction explanation

▪ Players = variables/features (𝑥1, … , 𝑥𝑝)

▪ Payment = prediction 𝑓(𝑥∗)

► Shapley value for feature 𝑗 = 𝜙𝑗:

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑤 𝑆 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆 , 𝑤(𝑆) =
𝑆 ! 𝑀 − 𝑆 − 1 !

𝑀 !

▪ Contribution function 𝑣 𝑆 ≈ prediction “knowing only the features 

in 𝑆”

▪ 𝑀 = {1,… , 𝑝}

▪ 𝑆 is a subset of 𝑀

3



Shapley formula with 3 features 
► The Shapley formula from the previous slide

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑤 𝑆 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

4



SHAP

► Lundberg & Lee (2017): Shapley value explanation using 

𝑣 𝑆 = 𝐸 𝑓 𝑥 𝑥𝑆 = 𝑥𝑆
∗

► 𝐸 𝑓 𝑥 𝑥𝑆 = 𝑥𝑆
∗ is unknown, so has to be approximated

𝐸 𝑓 𝑥 𝑥𝑆 = 𝑥𝑆
∗ = 𝐸 𝑓 𝑥 ҧ𝑆, 𝑥𝑆 𝑥𝑆 = 𝑥𝑆

∗ = ∫ 𝑓 𝑥 ҧ𝑆, 𝑥𝑆
∗ 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆

∗ d𝑥 ҧ𝑆

► SHAP assumes feature independence in this stage

▪ Replaces 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆
∗ by 𝑝 𝑥 ҧ𝑆

► Approximates the integral by Monte Carlo sampling

▪ 𝑣𝑆𝐻𝐴𝑃 𝑆 =
1

𝐾
σ𝑘=1
𝐾 𝑓( 𝑥 ҧ𝑆

(𝑘)
, 𝑥𝑆

∗), where 𝑥 ҧ𝑆
(𝑘)

is a sample from the 

training data, sampled independently of 𝑥𝑆
∗

► Strumbelj & Kononenko (2014) doing a simular thing

5



Kernel SHAP

► Computing 𝜙𝑗 requires approximation of 2𝑝+1 different 𝑣(𝑆)

▪ Computationally too heavy with many features (large 𝑝)

► The majority of the Shapley weights 𝑤(𝑆) are usually very 

small compared to the largest ones.

► Kernel SHAP (Lundberg & Lee, 2017) 

▪ Limit the computational problem by sampling a finite set 𝑆
sets with probabilities proportional to 𝑤(𝑆), and only perform 

computation for those 𝑆

▪ Computes all 𝜙𝑗 simultaneously by rephrasing it as the 

solution to a weighted least squares problem

6



Available software

► Python library for (kernel) SHAP by Scott Lundberg: 

https://github.com/slundberg/shap

► Model-specific implementations (TreeSHAP) directly in 

XGBoost/LightGBM/CatBoost libraries

► R-packages iml (https://github.com/christophM/iml) and 

ExplainPrediction (https://cran.r-

project.org/web/packages/ExplainPrediction/index.html) 

can compute Shapley values

7

https://github.com/slundberg/shap
https://github.com/christophM/iml
https://cran.r-project.org/web/packages/ExplainPrediction/index.html


Kjersti’s example using SHAP 
– high probability

8



Kjersti’s example using SHAP 
– low probability

9



Comparing LIME and Shapley/SHAP I

LIME

► Individual explanation with local

reference level

► 𝜙𝒋 ≈ How does the prediction 

change if you change 𝑥𝑗 from any 

other category/bin of 𝑥𝑗 to that of 𝑥𝑗
∗

► “How can I increase/reduce my 

prediction?”

► 𝜙1 + 𝜙2 +⋯+ 𝜙𝑝 ≈ 𝑓 𝑥∗ − 𝜙0

Shapley/SHAP

► Individual explanation with global

reference level

► 𝜙𝒋 ≈ How does the prediction 

change from not knowing 𝑥𝑗
∗

► “How is the prediction influenced by 

the observing different features?”

► 𝜙1 + 𝜙2 +⋯+ 𝜙𝑝 = 𝑓 𝑥∗ − 𝜙0

Explains two different things

Individuals

similar to 

you

All 

individuals



Comparing LIME and Shapley/SHAP I

LIME

► Individual explanation with local

reference level

► 𝜙𝒋 ≈ How does the prediction 

change if you change 𝑥𝑗 from any 

other category/bin of 𝑥𝑗 to that of 𝑥𝑗
∗

► “How can I increase/reduce my 

prediction?”

► 𝜙1 + 𝜙2 +⋯+ 𝜙𝑝 ≈ 𝑓 𝑥∗ − 𝜙0

Shapley/SHAP

► Individual explanation with global

reference level

► 𝜙𝒋 ≈ How does the prediction 

change from not knowing 𝑥𝑗
∗

► “How is the prediction influenced by 

the observing different features?”

► 𝜙1 + 𝜙2 +⋯+ 𝜙𝑝 = 𝑓 𝑥∗ − 𝜙0

Explains two different things

Individuals

similar to 

you

All 

individuals

?
?



Comparing LIME and Shapley/SHAP II

LIME

► Conceptually easy

► Easy-to-use software

► No theoretical foundation or 

optimality results

► Assumes feature independence 

when sampling for local fitting

► “Chooses” some features that get 

non-zero 𝜙s 

► Not necessarily continuous 𝜙𝑗

Shapley/SHAP

► Harder to understand how it works

► Some software exists

► Complete theoretical framework

with nice properties

► Assumes feature independence 

when approximating 𝑣 𝑆

► All contributing 𝑥𝑗 get a non-zero 

𝜙𝑗

► Continuous 𝜙𝑗

12



Comparing LIME and Shapley/SHAP II

LIME

► Conceptually easy

► Easy-to-use software

► No theoretical foundation or 

optimality results

► Assumes feature independence 

when sampling for local fitting

► “Chooses” some features that get 

non-zero 𝜙s 

► Not necessarily continuous 𝜙𝑗

Shapley/SHAP

► Harder to understand how it works

► Some software exists

► Complete theoretical framework

with nice properties

► Assumes feature independence 

when approximating 𝑣 𝑆

► All contributing 𝑥𝑗 get a non-zero 

𝜙𝑗

► Continuous 𝜙𝑗

13
Problematic in case of 

(strong) feature dependence



Our research within Big Insight

► We prefer the Shapley framework

► The (only?) problem with SHAP is the assumption of 

features independence when approximating 

𝑣 𝑆 = 𝐸 𝑓 𝑥 𝑥𝑆 = 𝑥𝑆
∗ = ∫ 𝑓 𝑥 ҧ𝑆, 𝑥𝑆

∗ 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆
∗ d𝑥 ҧ𝑆

► Our novel idea: “Repair” (Kernel) SHAP by approximating 

𝑣(𝑆) properly

▪ Estimate the conditional distribution 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆
∗ instead of 

inserting the empirical distribution of 𝑝(𝑥 ҧ𝑆)

▪ Approximate the integral by Monte Carlo sampling similar to 

before 

◦ 𝑣𝐶𝑂𝑁𝐷.𝑆𝐻𝐴𝑃 𝑆 =
1

𝐾
σ𝑘=1
𝐾 𝑓( 𝑥 ҧ𝑆

(𝑘)
, 𝑥𝑆

∗), where 𝑥 ҧ𝑆
(𝑘)

is a sample from 

an approximation to 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆
∗

14



Approximating the conditional distribution

► (At least) three alternatives:

1. Assume a parametric multivariate distribution with 

known conditionals, e.g. 

◦ Gaussian distribution

◦ Generalised Hyperbolic Distribution

2. Use a copula with a dependence distribution with know 

conditionals

3. Use a nonparametric conditional empirical distribution

► Obviously computationally more heavy than using the 

empirical distribution of 𝑝(𝑥 ҧ𝑆) directly
15



Concluding remarks

► Still needs to set some parameters

▪ Number of Monte Carlo samples (K): We typically use 10^3 to 10^4

▪ Bandwidth parameter for the conditional empirical approach: We 

have used AICc (Hurvich et al., 2007) for selection

► Experiments with different methods:

▪ Performance depends on data distribution and prediction model

▪ Empirical approach preferable for 𝑆 ≤ 3, otherwise copula 

method is preferable

▪ Hard to estimate conditional distributions, but our methods are 

always* better than assuming independence

▪ TreeSHAP in XGBoost/LightGBM/CatBoost is very inaccurate

► We are currently writing a paper

► Will also publish an R-package



Copula method

Procedure to sample from 𝑝 𝑥 ҧ𝑆 𝑥𝑆 = 𝑥𝑆
∗ assuming a Gaussian 

copula

1. For every feature: Transform the training observations to 

standard normal 𝑧𝑗 = Φ−1( ෠𝐹𝑗 𝑥𝑗 )

2. Fit a Gaussian distribution 𝑝𝐺 to the transformed training 

data (𝑧1, … , 𝑧𝑝)

3. Sample (𝑧 ҧ𝑆
(1)
, … , 𝑧 ҧ𝑆

𝐾
) from 𝑝𝐺 𝑧 ҧ𝑆 𝑧𝑆 = 𝑧𝑆

∗

4. For every feature in 𝑆: Convert the samples back to the 

original marginal: 𝑥 ҧ𝑆,𝑗
(𝑘)

= ෠𝐹𝑗
−1(Φ 𝑧 ҧ𝑆,𝑗

𝑘
)

17



Conditional empirical distribution approach

► Compute the Mahalanobis distance 𝐷𝑆 𝑥, 𝑥∗ between 𝑥∗

and all observations 𝑥 in the training set, using only the

elements in 𝑺

► Compute the weight for each observation 𝑤𝑆 𝑥 =
exp(𝐷𝑆 𝑥, 𝑥∗ 2/(2𝜎)) 

► Define the conditional empirical distribution of 𝑥 ҧ𝑆 given 
𝑥𝑆 = 𝑥𝑆

∗ as that having point mass of size 𝑤𝑆 𝑥 at 𝑥 ҧ𝑆

► Order the weights from large to small 𝑤𝑆
(1)
, … , 𝑤𝑆

(𝑛)
, and 

use K largest weights instead of Monte Carlo sampling

𝑣 𝑆 =
σ𝑘=1
𝐾 𝑤𝑆

(𝑘)
𝑥 𝑓( 𝑥 ҧ𝑆, 𝑥𝑆

∗)

σ𝑘=1
𝐾 𝑤𝑆

(𝑘)
𝑥

18


