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Shapley values

>

NRES

Originating from cooperative game theory
Shapley (1953)

Lloyd S. Shapley
Nobel Price Winner in

Used to distribute payments to players based  Economics, 2012
on their contribution

Shapley value for a player = the “fair” payment that player
should get

Has an explicit mathematical formula

Several nice optimality properties in terms of fairness
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Shapley values for prediction
explanation

» Idea for use in prediction explanation
Players = variables/features (x;, ..., x,)

Payment = prediction f(x™)

» Shapley value for feature j = ¢;:

ISITAM| =S| = 1)!

b= ) wEOEEUED-vE)  w(s) = M1

SEM\ {j}

Contribution function v(S) = prediction “knowing only the features
inS”

M={1,..,p}

S is a subset of M
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Shapley formula with 3 features

» The Shapley formula from the previous slide

b= Y ws)EEUED =)

SEM\ {Jj}

¢1

3 (01230 —0((23D) +5 (v({1.2D—v({2D))+5 (v({L3D—v({3D) +5 (v({1H—v(®).
g2 = L(v({123D)—0({131)+1 (v({1,2)—o({1)) +1 ({230 —v({3D) +1 (v({21)—v(®)).
§ (v(f123n—v({12)) +§ (v(13N—0({1) +§ (v({23D—v({2D) +5 (v({31)—v(®)).

¢z =

i



SHAP

>

Lundberg & Lee (2017): Shapley value explanation using
v(S) = Elf(x)|xs = xg]

Elf(x)|xs = x¢] is unknown, so has to be approximated

E[f (0)lxs = x5] = E[f (x5, x5)lxs = x5] = [ f (x5, %5)p(xslxs = x5)dxs
SHAP assumes feature independence in this stage

Replaces p(xslxs = x5) by p(xs)
Approximates the integral by Monte Carlo sampling

Veyap(S) = % Igzlf(xﬁ"%x;), where xék) Is a sample from the

training data, sampled independently of xg

Strumbelj & Kononenko (2014) doing a simular thing



Kernel SHAP

>

Computing ¢; requires approximation of 2P+ different v(S)
=  Computationally too heavy with many features (large p)

The majority of the Shapley weights w(S) are usually very
small compared to the largest ones.

Kernel SHAP (Lundberg & Lee, 2017)

= Limit the computational problem by sampling a finite set S
sets with probabilities proportional to w(S), and only perform
computation for those S

= Computes all ¢; simultaneously by rephrasing it as the
solution to a weighted least squares problem
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Available software

>

Python library for (kernel) SHAP by Scott Lundberg:

https://qithub.com/slundbe[q/shap
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https://github.com/slundberg/shap
https://github.com/christophM/iml
https://cran.r-project.org/web/packages/ExplainPrediction/index.html

Kjersti’s example using SHAP
— high probability

Feature

Capital.Gain
Hours.perweek
Marital. Status
Education.Mum

Occupation

Capital.Gain
Marital. Status
Education.Mum
Hours.perweek

Sex

Gl

Case:1
Label: p1

Probability: 1
Explanation Fit: 0

Case: 3
Label: p1

Probability: 1
Explanation Fit: 0

Capital Gain
Occupation
Marital Status
Age

Education.Num

Capital. Gain
Education.Mum
Hours.perweek

Marital. Status

Occupation

Weight

Case: 2

Label: p1
Probability: 1
Explanation Fit: 0

0.0 0.2 0.4 0.6 0.8

Case: 4

Label: p1
Probability: 1
Explanation Fit: 0

. Supports . Contradicts



Kjersti’s example using SHAP

— low probability

Feature

Age
Hours.per.week
Marital. Status
Education.Mum

Occupation

Case:1

Label: p1
Probability: 5.0e-06
Explanation Fit: 0

-0.100 -0.075

Age
Hours.perweek
Marital Status
Education.Num

Occupation

Case: 3

Label: p1
Probability: 4.9e-06
Explanation Fit: 0

-0.050

-0.025

0.000

-0.100 -0.075

Gl

-0.050

-0.025

0.000

Age
Hours.perweek
Marital. Status
Education.Num

Occupation

Age
Hours.perweek
Marital Status
Education.Num

Cccupation

Weight

Case: 2

Label: p1
Probability: 2.9e-06
Explanation Fit: 0

-0.100 -0.075 -0.050 -0.025 0.000

Case: 4

Label: p1
Probability: 4.9e-06
Explanation Fit: 0

-0.100 -0.075 -0.050 -0.025 0.000

. Supports . Contradicts



Comparing LIME and Shapley/SHAP |

Explains two different things

LIME

Individual explanation with local
reference level

¢; ~ How does the prediction
change Iif you change x; from any
other category/bin of x; to that of x;

“How can | increase/reduce my
prediction?”

1t P+t = (X)) — Py

Individuals
similar to
you

Shapley/SHAP

» Individual explanation with global
reference level

» ¢; ~ How does the prediction
change from not knowing x;

» “How is the prediction influenced by
the observing different features?”

> P+ P+t P, = f(xT)— ¢y

N
¥ % individuals
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Comparing LIME and Shapley/SHAP I

LIME
» Conceptually easy >
» Easy-to-use software >
» No theoretical foundation or >

optimality results

» Assumes feature independence »
when sampling for local fitting

» “Chooses” some features that get »
non-zero ¢s

» Not necessarily continuous ¢; >

m
o

i

Shapley/SHAP
Harder to understand how it works
Some software exists

Complete theoretical framework
with nice properties

Assumes feature independence
when approximating v(S)

All contributing x; get a non-zero
P

Continuous ¢;
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Our research within Big Insight

» We prefer the Shapley framework

» The (only?) problem with SHAP is the assumption of
features independence when approximating

v(S) = E[f()Ixs = x5] = [ f(x5x8)p(xs5]xs = x$)dxs

» Our novel idea: "Repair” (Kernel) SHAP by approximating
v(S) properly
= Estimate the conditional distribution p(xz|xs = x¢) instead of
Inserting the empirical distribution of p(x¢)
Approximate the integral by Monte Carlo sampling similar to
before

° Vconp.sHap(S) = %Z’,ﬁzlf(xgk),xg), where xg‘) is a sample from

an approximation to p(xs|xs = x2)

i
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Approximating the conditional distribution

» (At least) three alternatives:

1. Assume a parametric multivariate distribution with
known conditionals, e.g.
Gaussian distribution
Generalised Hyperbolic Distribution

2. Use a copula with a dependence distribution with know
conditionals

3. Use a nonparametric conditional empirical distribution

» Obviously computationally more heavy than using the
empirical distribution of p(xs) directly

——
——



Concluding remarks

>

Still needs to set some parameters
= Number of Monte Carlo samples (K): We typically use 10"3 to 104

= Bandwidth parameter for the conditional empirical approach: We
have used AICc (Hurvich et al., 2007) for selection

Experiments with different methods:
= Performance depends on data distribution and prediction model

= Empirical approach preferable for |S| < 3, otherwise copula
method is preferable

= Hard to estimate conditional distributions, but our methods are
always* better than assuming independence

=  TreeSHAP in XGBoost/LightGBM/CatBoost is very inaccurate
We are currently writing a paper

Will also publish an R-package



Copula method

Procedure to sample from p(xs|xs = xc) assuming a Gaussian
copula

1. For every feature: Transform the training observations to
standard normal z; = @~ (F;(x;))

2. Fit a Gaussian distribution p. to the transformed training
data (zy, ..., zp)

3. Sample (zgl), ...,ZQK)) from p.(zs|lzs = z¢)

4. For every feature in S: Convert the samples back to the
original marginal: x( ) = F (CD( (k)))

i
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Conditional empirical distribution approach

» Compute the Mahalanobis distance Ds(x, x*) between x*
and all observations x in the training set, using only the
elements in §

» Compute the weight for each observation wg(x) =
exp(Ds(x,x)*/(20))

» Define the conditional empirical distribution of xs given
Xs = X¢ as that having point mass of size wg(x) at xg

» Order the weights from large to small w( ). wé"), and
use K largest weights mstead of Monte Carlo sampling

»(S) = Vo= 1 Ws )(x)f(xs»xs)

2N K
m-.s..- k=1 5 Y 18
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