

Shapley Value Explanations, Comparison with LIME & Our work

Martin Jullum

Shapley values

 Originating from cooperative game theory Shapley (1953)

Lloyd S. Shapley Nobel Price Winner in Economics, 2012.

- Used to distribute payments to players based on their contribution
- Shapley value for a player = the "fair" payment that player should get
- Has an explicit mathematical formula
- Several nice optimality properties in terms of fairness

Shapley values for prediction explanation

- Idea for use in prediction explanation
 - Players = variables/features $(x_1, ..., x_p)$
 - Payment = prediction $f(x^*)$
- Shapley value for feature $j = \phi_j$:

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right), \qquad w(S) = \frac{|S|! \left(|M| - |S| - 1 \right)!}{|M|!}$$

- Contribution function v(S) ≈ prediction "knowing only the features in S"
- $M = \{1, \dots, p\}$
- S is a subset of M

Shapley formula with 3 features

► The Shapley formula from the previous slide

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} w(S) \left(v(S \cup \{j\}) - v(S) \right)$$

$$\begin{split} \phi_1 &= \frac{1}{3} \left(v(\{1,2,3\}) - v(\{2,3\}) \right) + \frac{1}{6} \left(v(\{1,2\}) - v(\{2\}) \right) + \frac{1}{6} \left(v(\{1,3\}) - v(\{3\}) \right) + \frac{1}{3} \left(v(\{1\}) - v(\emptyset) \right), \\ \phi_2 &= \frac{1}{3} \left(v(\{1,2,3\}) - v(\{1,3\}) \right) + \frac{1}{6} \left(v(\{1,2\}) - v(\{1\}) \right) + \frac{1}{6} \left(v(\{2,3\}) - v(\{3\}) \right) + \frac{1}{3} \left(v(\{2\}) - v(\emptyset) \right), \\ \phi_3 &= \frac{1}{3} \left(v(\{1,2,3\}) - v(\{1,2\}) \right) + \frac{1}{6} \left(v(\{1,3\}) - v(\{1\}) \right) + \frac{1}{6} \left(v(\{2,3\}) - v(\{2\}) \right) + \frac{1}{3} \left(v(\{3\}) - v(\emptyset) \right). \end{split}$$

SHAP

- ► Lundberg & Lee (2017): Shapley value explanation using v(S) = E[f(x)|x_S = x^{*}_S]
- $E[f(x)|x_S = x_S^*]$ is unknown, so has to be approximated

 $E[f(x)|x_{S} = x_{S}^{*}] = E[f(x_{\bar{S}}, x_{S})|x_{S} = x_{S}^{*}] = \int f(x_{\bar{S}}, x_{S}^{*})p(x_{\bar{S}}|x_{S} = x_{S}^{*})dx_{\bar{S}}$

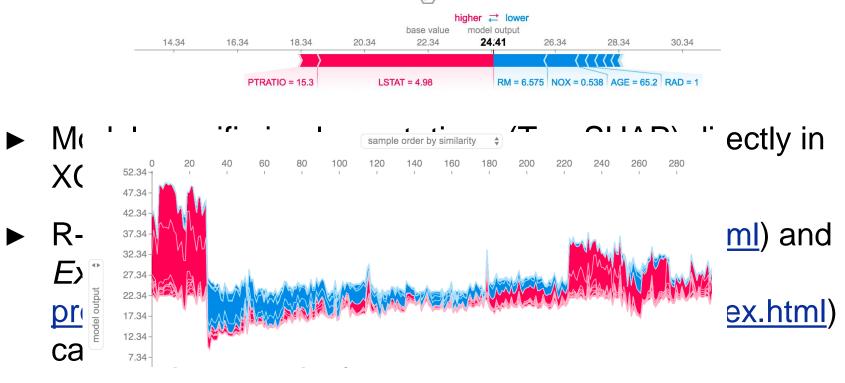
- SHAP assumes feature independence in this stage
 - Replaces $p(x_{\bar{S}}|x_S = x_S^*)$ by $p(x_{\bar{S}})$
- Approximates the integral by Monte Carlo sampling
 - $v_{SHAP}(S) = \frac{1}{K} \sum_{k=1}^{K} f(x_{\bar{S}}^{(k)}, x_{\bar{S}}^*)$, where $x_{\bar{S}}^{(k)}$ is a sample from the training data, sampled **independently** of $x_{\bar{S}}^*$
- Strumbelj & Kononenko (2014) doing a simular thing

Kernel SHAP

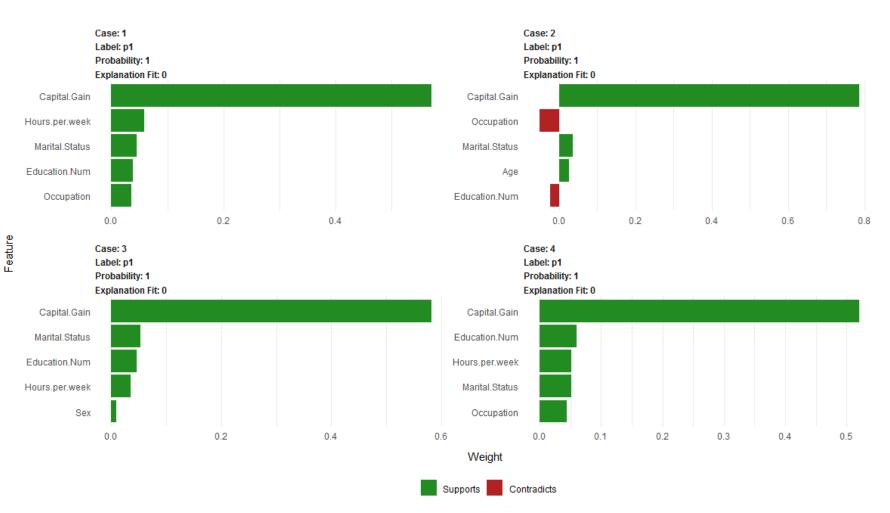
- Computing ϕ_i requires approximation of 2^{p+1} different v(S)
 - Computationally too heavy with many features (large p)
- The majority of the Shapley weights w(S) are usually very small compared to the largest ones.
- ► Kernel SHAP (Lundberg & Lee, 2017)
 - Limit the computational problem by sampling a finite set S sets with probabilities proportional to w(S), and only perform computation for those S
 - Computes all ϕ_j simultaneously by rephrasing it as the solution to a weighted least squares problem

Available software

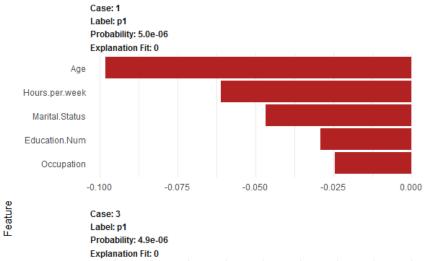
Python library for (kernel) SHAP by Scott Lundberg: <u>https://github.com/slundberg/shap</u>

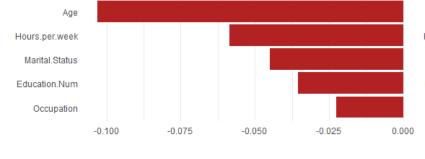


Kjersti's example using SHAP – high probability

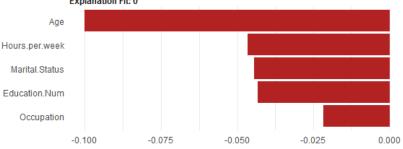


Kjersti's example using SHAP low probability

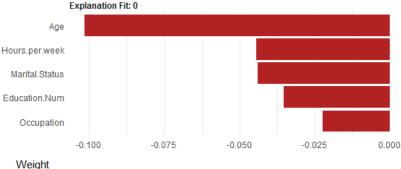




Case: 2 Label: p1 Probability: 2.9e-06 Explanation Fit: 0



Case: 4 Label: p1 Probability: 4.9e-06



Supports Contradicts

Comparing LIME and Shapley/SHAP I

Explains two different things

LIME

- Individual explanation with local reference level
- ▶ φ_j ≈ How does the prediction change if you change x_j from any other category/bin of x_j to that of x^{*}_j
- "How can I increase/reduce my prediction?"

Individuals similar to you

Shapley/SHAP

- Individual explanation with global reference level
- $\phi_j \approx$ How does the prediction change from not knowing x_j^*
 - "How is the prediction influenced by the observing different features?"

•
$$\phi_1 + \phi_2 + \dots + \phi_p = f(x^*) - \phi_0$$

Comparing LIME and Shapley/SHAP I

Explains two different things

LIME

- Individual explanation with **local** reference level
- $\phi_j \approx \text{How does the prediction}$ change if y change x_i from any other category for of x_i to that of x_i^*
- "How can I in erease/reduce my prediction?"
- $\phi_1 + \phi_2 + \dots + \phi_n \approx f(x^*) \phi_0$

Individuals similar to you

Shapley/SHAP

- Individual explanation with global reference level
- $\phi_i \approx$ How does the prediction change from not knowing x_i^*
 - "How is the prediction influenced by the observing different features?"

•
$$\phi_1 + \phi_2 + \dots + \phi_p = f(x^*) - \phi_0$$

Comparing LIME and Shapley/SHAP II

LIME

- Conceptually easy
- Easy-to-use software
- No theoretical foundation or optimality results
- Assumes feature independence when sampling for local fitting
- "Chooses" some features that get non-zero φs
- Not necessarily continuous ϕ_i

Shapley/SHAP

- Harder to understand how it works
- Some software exists
- Complete theoretical framework with nice properties
- Assumes feature independence when approximating v(S)
 - All contributing x_j get a non-zero ϕ_j
- Continuous ϕ_j

Comparing LIME and Shapley/SHAP II

LIME

- Conceptually easy
- Easy-to-use software
- No theoretical foundation or optimality results
- Assumes feature independence when sampling for local fitting
- "Chooses" some features that get ▶
 non-zero φs
- Not necessarily continuous ϕ_i

Shapley/SHAP

- Harder to understand how it works
- Some software exists
- Complete theoretical framework with nice properties
- Assumes feature independence when approximating v(S)
 - All contributing x_j get a non-zero ϕ_j
 - Continuous ϕ_i

Problematic in case of (strong) feature dependence

Our research within Big Insight

- We prefer the Shapley framework
- The (only?) problem with SHAP is the assumption of features independence when approximating
 v(S) = E[f(x)|x_S = x^{*}_S] = ∫ f(x_S, x^{*}_S)p(x_S | x_S = x^{*}_S)dx_S
- Our novel idea: "Repair" (Kernel) SHAP by approximating v(S) properly
 - Estimate the conditional distribution $p(x_{\bar{S}}|x_S = x_S^*)$ instead of inserting the empirical distribution of $p(x_{\bar{S}})$
 - Approximate the integral by Monte Carlo sampling similar to before
 - $v_{COND,SHAP}(S) = \frac{1}{K} \sum_{k=1}^{K} f(x_{\bar{S}}^{(k)}, x_{S}^{*})$, where $x_{\bar{S}}^{(k)}$ is a sample from an approximation to $p(x_{\bar{S}} | x_{S} = x_{S}^{*})$

Approximating the conditional distribution

- ► (At least) three alternatives:
 - 1. Assume a parametric multivariate distribution with known conditionals, e.g.
 - Gaussian distribution
 - Generalised Hyperbolic Distribution
 - 2. Use a copula with a dependence distribution with know conditionals
 - 3. Use a nonparametric **conditional** empirical distribution
- Obviously computationally more heavy than using the empirical distribution of p(x_{s̄}) directly

Concluding remarks

- Still needs to set some parameters
 - Number of Monte Carlo samples (K): We typically use 10³ to 10⁴
 - Bandwidth parameter for the conditional empirical approach: We have used AICc (Hurvich et al., 2007) for selection
- Experiments with different methods:
 - Performance depends on data distribution and prediction model
 - Empirical approach preferable for $|S| \le 3$, otherwise copula method is preferable
 - Hard to estimate conditional distributions, but our methods are always* better than assuming independence
 - TreeSHAP in XGBoost/LightGBM/CatBoost is very inaccurate
- We are currently writing a paper
- Will also publish an R-package

Copula method

Procedure to sample from $p(x_{\bar{S}}|x_S = x_S^*)$ assuming a Gaussian copula

- 1. For every feature: Transform the training observations to standard normal $z_j = \Phi^{-1}(\hat{F}_j(x_j))$
- 2. Fit a Gaussian distribution p_G to the transformed training data $(z_1, ..., z_p)$
- 3. Sample $(z_{\bar{S}}^{(1)}, ..., z_{\bar{S}}^{(K)})$ from $p_G(z_{\bar{S}}|z_S = z_S^*)$
- 4. For every feature in *S*: Convert the samples back to the original marginal: $x_{\bar{S},j}^{(k)} = \hat{F}_j^{-1}(\Phi(z_{\bar{S},j}^{(k)}))$

Conditional empirical distribution approach

- Compute the Mahalanobis distance D_S(x, x*) between x* and all observations x in the training set, using only the elements in S
- Compute the weight for each observation $w_S(x) = \exp(D_S(x, x^*)^2/(2\sigma))$
- Define the conditional empirical distribution of $x_{\bar{s}}$ given $x_{\bar{s}} = x_{\bar{s}}^*$ as that having point mass of size $w_{\bar{s}}(x)$ at $x_{\bar{s}}$
- Order the weights from large to small $w_S^{(1)}, \dots, w_S^{(n)}$, and use K largest weights instead of Monte Carlo sampling

$$v(S) = \frac{\sum_{k=1}^{K} w_S^{(k)}(x) f(x_{\bar{S}}, x_S^*)}{\sum_{k=1}^{K} w_S^{(k)}(x)}$$

