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Abstract
Shapley values has established itself as one of the most appropriate and theoretically sound frameworks
for explaining predictions from complex machine learning models. The popularity of Shapley values
in the explanation setting is probably due to Shapley values’ unique theoretical properties. The main
drawback with Shapley values, however, is that the computational complexity grows exponentially in
the number of input features, making it unfeasible in many real world situations where there could be
hundreds or thousands of features. Furthermore, with many (dependent) features, presenting/visualizing
and interpreting the computed Shapley values also become challenging. The present paper introduces
and showcases a method that we call groupShapley. The idea of the method is to group features and then
compute and present Shapley values for these groups instead of for all individual features. Reducing
hundreds or thousands of features to half a dozen or so feature groups makes precise computations
practically feasible, and the presentation and knowledge extraction greatly simplified. We give practical
advice for using the approach and illustrate its usability in three different real world examples. The
examples vary in both data type (regular tabular data and time series), feature dimension (medium to
high), and application (insurance, genetics, and banking).
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1. Introduction

Consider a predictive modelling/machine learning setting with a model 𝑓(·) that takes an 𝑀
dimensional feature vector 𝑥 = {𝑥1, . . . , 𝑥𝑀} as input and provides a prediction 𝑓(𝑥) of an
unknown response 𝑦. Suppose that for a specific feature vector, 𝑥 = 𝑥*, we want to understand
how the different features (or types of features) contribute to the specific prediction outcome
𝑓(𝑥*). This task is called prediction explanation and is a type of local model explanation, as
opposed to a global model explanation, which attempts to explain the full model at once, through
concepts such as global feature importance [1, Ch. 2].

Shapley values [2] is a leading framework for prediction explanation. The methodology has,
in particular, received increased interest following the seminal XAI paper of Lundberg and Lee
[3]. The feature-wise Shapley values 𝜑1, . . . , 𝜑𝑀 for a predictive model 𝑓(𝑥) at 𝑥 = 𝑥* are
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given by

𝜑𝑗 =
∑︁

𝒮⊆ℳ∖{𝑗}

|𝒮|!(𝑀 − |𝒮| − 1)!

𝑀 !
(𝑣(𝒮 ∪ {𝑗})− 𝑣(𝒮)), (1)

for 𝑗 = 1, . . . ,𝑀 , where ℳ is the set of all features, and 𝑣(·) is a characteristic/contribution
function. 𝑣(·) represents an expected prediction knowing only feature values in 𝒮 , for which
there exists different definitions and estimation procedures that are appropriate in different
situations. The motivation and methodology of the present paper is, however, independent of
the choice of 𝑣(·). We therefore leave it unspecified for now. See e.g. [4, 5, 6] for details and
discussions of this topic, and Section 4 for the definitions and methods used in the real data
examples of the present paper. On the interpretability side, the Shapley value 𝜑𝑗 corresponds to
the change in the prediction caused by observing feature 𝑗 – averaged over knowledge of the
other features.

By inspecting (1), it is clear that the sum in the Shapley value formula grows exponentially in
the number of features, 𝑀 , and thus becomes computationally intractable when there are large
number of features. This problem has received a lot of attention both from the general game
theoretic side [7, 8, 9, 10], and the specific machine learning/XAI setting we are considering
[3, 11, 12, 13, 14, 15]. However, these methods are either restricted to certain models, require
strong assumptions, or trade speed for approximation accuracy and thus eventually become too
imprecise as the number of features increases. In particular, both the TreeSHAP and KernelSHAP
method of [3, 15], which are heavily used within XAI, belong to the third category [16]. In any
case, with hundreds or thousands of computed Shapley values, the presentation/visualization,
interpretation, and knowledge extraction become extremely difficult. This is especially the case
when some of the features are (highly) dependent, as their joint contribution to the prediction
function is (rightly so) spread out on the different features. This results in many small Shapley
values, see e.g., [4]. In most applied fields, feature dependence is the rule rather than the
exception. Thus, feature-wise prediction explanation using Shapley values remains notoriously
difficult. The question is then whether there is a way to obtain simple and intuitive explanations
of predictions from models with large number of features through the well-founded framework
of Shapley values.

1.1. The present approach

The present paper introduces and showcases groupShapley, a conceptually simple method that
explains predictions using the Shapley value framework for groups of features rather than indi-
vidual features. The paper is based on a more comprehensive and technical unpublished paper
[17], which, to the best of our knowledge, was the first to propose this approach for prediction
explanation. groupShapley simply replaces the individual features in (1) by feature groups,
creating perfectly well-defined Shapley values with all of the usual Shapley value properties.
Since the summation is over group sets rather than feature sets, the computational complexity is
kept small and the presentation/visualization of the Shapley values is no longer an issue, as long
as the number of groups is small. The way the features are grouped has important implications
for the interpretability of the computed Shapley values and the knowledge extraction thereof.



We advocate to group the features in a practically meaningful way, where similar feature types
are grouped together. This simplifies knowledge extraction and gives Shapley values with a
practical interpretation. For instance, in the case where a few base features/data sources are
used to construct a myriad of engineered features used by the model, groupShapley can provide
simple interpretations of predictions from this model by only presenting Shapley values for the
original base features or data sources.

Finally, groupShapley is implemented in the shapr R-package [18]1, allowing for simple
computation and visualization of explanations based on any application and predictive model.

The rest of the paper is organized as follows: Section 2 provides a brief overview of other
work on Shapley values for groups/coalitions and related approaches. Section 3 provides
the mathematical definition of groupShapley and discusses how groups can be constructed in
different practical settings. Then Section 4 gives three real world examples using car insurance,
genetics, and time series data sets. Finally, Section 5 provides a brief summary and some
concluding remarks.

2. Related work

In the general game theoretic literature, various notions of Shapley values with a grouping
component have been proposed and studied. Papers such as [19, 20, 21, 22] study various variants
of so-called quotient games and coalition games. However, such concepts do not reformulate
the game of interest like we do with groupShapley, but rather bring in the coalitional structure
as an additional component to the original game. Also, most of these formulations give values to
the original players and not the groups themselves. [23, 24] study and quantify the cooperation
strength between two or more players by defining a Shapley interaction index. [25, 26, 27]
study the profitability of forming coalitions/groups for individual players in a general game
theoretic setting. Although the computed value is termed the ‘Shapley group value’ in [25], it
has no direct connection to groupShapley in the present paper.

As mentioned in Section 1, there are also several papers that aim at reducing the computational
burden of calculating Shapley values for the original players. Some of these utilize grouping
structures to achieve this, see e.g., [7, 8, 28].

In addition to the previously mentioned paper [17], the formula used by groupShapley has
independently and very recently appeared in preprints [29, 30, 31, 32]. Although all of these
papers treat the groupShapley formula to some degree, they have different motives and are
rather mathematical heavy, making them inaccessible for many practitioners. Instead, this
paper takes a practical application oriented perspective. We minimize the mathematical details,
gear the group construction towards explanations that are useful for the specific application,
and showcase this on several relevant use cases.

Finally, note that [4, Sec 5.] suggests to use sums of feature-wise Shapley values as grouping
scores. However, these scores are not, in general, Shapley values, and do not bypass the
computational issue, see also [17, 31] for comparisons.

1The groupShapley methodology is (as of November 2021) only available in the development version of the
package on GitHub: github.com/NorskRegnesentral/shapr.

github.com/NorskRegnesentral/shapr


3. groupShapley

Recall the predictive modelling/machine learning setting from Section 1 with the predictive
model 𝑓(·) that produces predictions based on an 𝑀 -dimensional feature vector 𝑥 that one
wishes to explain. Let us now define a partition 𝒢 = {𝒢1, . . . ,𝒢𝐺} of the feature set ℳ,
consisting of 𝐺 groups2. Then the Shapley value for the 𝑖-th group (𝒢𝑖) explaining the prediction
𝑓(𝑥*) is given by

𝜑𝒢𝑖 =
∑︁

𝒯 ⊆𝒢∖𝒢𝑖

|𝒯 |𝑔!(𝐺− |𝒯 |𝑔 − 1)!

𝐺!
(𝑣(𝒯 ∪ 𝒢𝑖)− 𝑣(𝒯 )), (2)

where the summation index 𝒯 runs over the groups (not the individual features) in the set
of groups 𝒢 ∖ 𝒢𝑖, and |𝒯 |𝑔 refers to the number of groups (not the individual elements) in 𝒯 .
The contribution function 𝑣( · ) for groups of features can be directly extended from those for
individual features.

As groupShapley is simply the game theoretic Shapley value framework applied to groups of
features instead of individual features, the groupShapley values possess all the regular Shapley
value properties. In particular, the efficiency property states that

∑︀𝐺
𝑖=1 𝜑𝒢𝑖 = 𝑓(𝑥*) − 𝑣(∅),

the symmetry property roughly states that groups which contribute equally (regardless of the
influence of other feature groups) have identical Shapley values, and the null player property
states that feature groups with no contribution to the prediction (neither directly, nor through
other features) have a Shapley value of zero.

By directly comparing the formula for the feature-wise Shapley values in (1) with the group-
Shapley formula in (2), we see that the computational complexity of the sum reduces from 2𝑀−1

to 2𝐺−1, which gives a relative computational cost reduction of 2𝑀−𝐺. With, for example,
𝑀 = 50 features and 𝐺 = 5 feature groups, the relative cost reduction is 250−4 > 1013. That
is, the computational cost reduction is huge when moving from feature-wise Shapley values to
groupShapley.

3.1. Defining feature groups

With the general groupShapley procedure established in (2), the next task is defining feature
groups. We outline some suggestions below.

Feature knowledge: Grouping of features based on underlying knowledge depends on the
problem at hand. With typical, medium sized tabular data, one can create groups intuitively.
When predicting housing prices, for example, groups can be house attributes (square footage,
building materials), luxury amenities (presence of hot tub, pool, home theatre), locality (distance
to nearest grocery store/bus stop/gym), environmental factors (crime rate, air pollution, traffic,
sun exposure), and historical turnover. See also the car insurance example in Section 4.1. If less
is known about the features or the feature dimension is too large to manually create groups,
predefined groups based on domain knowledge can be used. See our gene example in Section 4.2.
Time series data can be grouped according to time – for example all values belonging to specific

2I.e. a grouping of features where each feature is represented in exactly one group and no group is empty.



years, months or weeks depending on the time scale and required explanation resolution. See
also the example in Section 4.3.

Feature dependence: We can also group features based on dependence. These groups can be
found using a clustering method that uses a dependence based similarity measure, see e.g., [33]
and [4, Sec. 5]. A benefit of this type of grouping is that it is not connected to the specific
application at hand, making it is easier to study theoretically. See [17] and [31] for work in that
direction.

The advantage of grouping based on feature knowledge and not feature dependence is that
the resulting Shapley values provide a directly meaningful interpretation for the specific model
prediction. Such an approach also allows groups to be formed based on the application and
problem at hand. On the other hand, dependence based grouping provides groupings without
practical meaning that are difficult to learn from. In the following section we focus only on
groups based on feature knowledge. This is our preferred grouping strategy, and allows us to
compare the groupShapley values directly with insights from the data sets.

3.2. Remarks

An obvious consequence of using groupShapley rather than computing feature-wise Shapley
values, is that one gets a less detailed explanation and cannot generally draw conclusions on
the contribution of individual features. While this might be a significant drawback in some
settings, we believe that it is a strength in most situations, as it keeps the explanations simple
and forces the user to focus on the bigger picture. As mentioned in 1, extracting knowledge
from hundreds or thousands of feature-wise Shapley values is inherently difficult, but is much
easier based on only a few groupShapley values. Furthermore, if one is particularly interested in
the contribution from a few specific features, these could be kept as is, while the remaining
features are grouped.

It is natural to ask whether there is a link between feature-wise Shapley values and group-
Shapley values. [17, 31] studies various aspects of this when the grouping is based on feature
dependence. However, to the best of our knowledge, there exists no general results that allows
computing feature-wise Shapley values from groupShapley values or vice versa. It may be worth
noting that by re-applying the Shapley framework to decompose a groupShapley value into the
features of the group, one obtains so-called Owen values for the features, see [21] for further
details.

A clear requirement for using groupShapley is that one is able to divide the features into
groups that makes sense. If the user has no knowledge about the features at all, and the
dependence structure of the features does not provide a meaningful way of clustering them,
then groupShapley is not a viable direction. However, not only are such scenarios rare, we also
believe that it is not very useful to explain predictions in such scenarios, since the complete
lack of information makes it impossible to transform any explanations to useful knowledge.



4. Real data examples

In this section, we demonstrate how groupShapley can be applied to three different real data
settings. In all of the examples, we use the conditional expectation as contribution function, i.e.,

𝑣(𝒯 ) = E[𝑓(𝑥)|𝑥𝒯 = 𝑥*
𝒯 ], (3)

where 𝑥𝒯 denotes the subvector of 𝑥 corresponding to feature subset 𝒯 . This contribution
function accounts properly for the dependence between the features [5], both within and
between the groups. For feature-wise Shapley values, (3) was introduced by [3], and has
since been used by several others [4, 6, 16, 34]. As mentioned in Section 1, the contribution
function needs to be estimated. In this paper we use Monte Carlo integration to approximate
the conditional expectation, see [16] for details. In that approach one needs an estimate of the
corresponding conditional distribution. Due to the different types of data in the three examples,
we will use three different methods to estimate conditional distributions, see the respective
subsections. All of the groupShapley computations were produced by our R-package shapr.

Note that these examples are for illustrational purposes only. A thorough explanation of the
predictive models, the mechanisms between the features, and the response in each application
require both a thorough analysis of the appropriateness of the fitted models and careful selection
of methods for modelling the feature distributions. This is beyond the scope of this paper. We
keep the explanations of the fitted models simple and report performance through area under
the receiver operator curve (AUC) [35] and Brier score [36].

4.1. Predicting car insurance risk with customer demographics

In this first example, we use a car insurance data set found on the Kaggle website. The data
contains two different response variables, 23 features, and 10,302 observations. The response
we use is the binary variable customer had a claim. The features can be naturally partitioned
into the following groups:

• Personal Information: age of driver, highest education level, number of children living at
home, value of home, income, job category, number of driving children, martial status,
single parent, gender, distance to work, whether driver lives in an urban city, how many
years driver has had job.

• Track Record: number of claims in the past five years, motor vehicle record points, licence
revoked in past seven years, amount of time as customer.

• Car Information: value of car, age of car, type of car, whether car is red.

Five of the variables have missing data. We use predictive mean matching to impute these.
To model the probability of a claim, we use 90% of the data to train a random forest model
with 500 trees using the ranger R-package [37] on the binary response and all 23 features. On
the remaining 10% of the data, we get an AUC score of 0.835, and Brier score of 0.148. The
average predicted probability of a claim is 0.273. We then use groupShapley to calculate Shapley
values for the Personal Information, Car Information, and Track Record groups for four different
individuals. Since there is a mix of continuous, discrete, and categorical features, the conditional



inference tree approach of [6] is used to estimate the required conditional distributions used in
the Monte Carlo integration to estimate (3). We plot the three grouped Shapley values for four
different individuals in Figure 1.

The first individual is a single mother of four (where two children drive). She drives an SUV
and drives 27 miles to work. She has had one claim in the last five years and has three motor
vehicle record points. Personal Information gives the largest increase in the predicted probability,
which is not surprising given her travel distance and two young drivers. The second individual
is a 37-year-old father of two (where one child drives). He has had one claim in the last five
years, his licence revoked in the last seven years, and ten motor vehicle points. His Track Record
significantly increases his predicted probability, which is natural given his misdemeanors.

The third individual is a 60-year-old married male with no kids at home. He drives a red
sports car and has had three claims in the last five years. He has a PhD and currently works as a
doctor. His Personal Information naturally reduces his predicted probability, while his poor Track
Record, and to some extent his luxurious Car Information increases his predicted probability.
The fourth individual is a 50-year-old female with no kids at home. She drives a minivan and
has no previous claims or revoked licences. She also has a PhD and drives 42 miles to work.
She appears to be on the safer side of things, which is reflected in all negative groupShapley
values and a smaller predicted probability.

Figure 1: Estimated groupShapley values for four individuals in the car insurance example, with the
groups defined in Section 4.

4.2. Predicting inflammatory bowel diseases with genes

In this section, we show how groupShapley can be used with high dimensional gene data when
the goal is to decide how groups of genes influence the prediction for different types of patients.
We use a data set from [38] with 127 patients: 85 with inflammatory bowel disease (IBD) where
59 have Crohn’s disease (CD) and 26 have ulcerative colitis (UC), and 42 healthy controls. Each
patient has data for 22,283 genes run on an affymetrix U133A microarray [38]. The example in
this section is motivated by an application in [39] which uses this data set to motivate the use



of sparse-group lasso3.
We begin by modelling the probability of falling in either diagnosis class (IBD = CD or UD)

versus the probability of being a control. To really challenge groupShapley, we here use the
approach to see if we can identify differences in the explanations between the patients with CD
versus the patients with UC, despite the model not knowing the difference.

Since calculating Shapley values on more than 22,000 genes is both infeasible and useless
(most would probably be close to zero), we group the genes using the Hallmark gene sets [40].
This reduces the 22,283 genes to 50 gene sets. Analogously to [39], we remove the genes that
are not part of any of the gene sets, leaving us with 6,965 genes. We then choose 100 patients at
random to use as our training set and produce explanations of the predictions for the remaining
27 individuals.

We use the glmnet R-package to fit a penalized logistic regression model with 𝐿1 regular-
ization (Lasso) [41] to these data and use 10 fold cross-validation based on binomial deviance
to select the shrinkage parameter. This leaves us with 45 non-zero regression coefficients
belonging to 23 different gene sets. Due to the potential dependence between genes in the same
gene set, we consider all genes (4834 in total) contained in these 23 gene sets.

Although computing groupShapley for 23 gene sets is several magnitudes simpler than
computing Shapley values for thousands of individual genes, it is still computationally heavy.
We therefore use the KernelSHAP approach of [3] to reduce the sum in (1) to 5000 group
subsets, at the cost of some approximation error. Since the features (genes) in this example are
all continuous, and their high dimension makes it difficult to evaluate specific distributional
assumptions, we rely on the nonparametric empirical method of [16] to approximate the required
conditional distributions used in the Monte Carlo integration to estimate (3).

In this simplified binary classification problem, we achieve perfect discrimination between
diseased and control individuals in our test set with an AUC of 1. The Brier score is 0.004. Since
for illustrational purposes we concentrate on how the explanations vary between different patient
classes (healthy controls, CD, and UC), we show box plots of the estimated groupShapley values
for each gene set and patient class, instead of the groupShapley values per individual. These
box plots are given in Figure 2. We see that the explanations unsurprisingly vary significantly
between the controls and diagnosed, but that there also are some differences between UC and
CD.

Below we identify some studies that back up some of the differences in groupShapley values
between controls, UC, and UD patients in Figure 2. Starting from the top of Figure 2, the clearest
distinction between the groupShapley values for healthy controls and CD/UD (with a negative
value for the former and a positive for the latter) is present for the ‘P53 Pathway’ gene set. The
importance of the P53 gene set is also confirmed in the meta study [42] and references therein.

Second, the ‘TNFA signaling via NFKB’ gene set contains the ‘NFKB2’ and ‘COPEB (KLF6)’
genes which are highlighted in [38] as genes that can distinguish between UC and CD. This gene
set is also where we see the largest difference in the groupShapley box plots between UC and
CD. A pure CD versus control study [43] concludes that the ‘TNFA signaling via NFKB’ gene set
has an important role for characterising CD. This can also be seen in Figure 2. Gene set 5 from

3Although we follow their data processing steps, we cannot compare groupShapley to sparse-group lasso as the
latter is a predictive model, not an explanation method.



Figure 2: Box plots of estimated groupShapley values for 27 individuals, per patient class in the IBD
gene example, using the Hallmark gene sets as groups. Gene sets discussed are given in bold italics.

the top, ‘UV response up’, is also mentioned by [43] as a potential identifier of CD compared to
controls, which is also indicated by the big differences between CDs and some of the controls
in Figure 2. While our box plots also indicate interesting differences for some of the other gene
sets, we have not been able to find support for that in the biological/medical literature. However,
we are not domain experts, and have not carried out an exhaustive literature review on CD/UD
in relation to the Hallmark gene sets, so such support could also exist.

This example serves as an illustration of how groupShapley can be used to extract knowledge
and explain models based on thousands of genes. While we used a general purpose gene set,
knowledge extraction may increase if these groupings are specially prepared to the specific
application by domain experts.



4.3. Predicting mortgage default with time series data

This example is based on the the work of [44] which predict future mortgage default based on
customers’ bank accounts. The data comes from Norway’s largest bank (DNB) and includes
20,989 customers which previously had a mortgage between 2012 and 2016. In [44], separate
convolutional neural networks (CNN) are fitted to six time series of daily records from the
customers’ bank accounts to predict the probability of default within a specified future time
window. We refer to [44] for details about the model specification, data preparation, and
modelling setup. To simplify the present example, we only consider one of these time series,
consisting of the sum of the daily account balances of the checking account, saving account,
and credit card account. Using only this single time series, their CNN model achieves an AUC of
0.867 and a Brier score of 0.044 on their out-of-sample and out-of-time test set of 1921 customers.

To exemplify how groupShapley can be used on time series data, we divide the input time
series into four non-overlapping time periods: Q1-Q4. We then compute groupShapley values
for each of these quarters to understand how each part of the time series contributes to the
prediction. A figure showing the time series of four customers4 and their respective predictions
are shown in Figure 3. The four quarters are shaded respectively.

Figure 3: Time series plots of bank account balances of four fictive individuals in the mortgage default
prediction example. The balances are scaled to the interval [0,1], see [44] for details. The different
greyscales indicate the different quarters of the year.

There have been surprisingly little focus on explaining predictive models based on time
series data with Shapley values. To explain predictions from this model, we therefore need
new methodology for estimating the conditional distributions required in the Monte Carlo
integration to estimate (3) that appropriately accounts for the time/ordering component. Since
this is a research topic on its own, we here settle for a simple approach which has conceptual

4Since these account balances contain sensitive information, this is simulated data based on the accounts of real
customers.



similarities with the empirical method of [16]. The approach is briefly described below.
Since the subsets 𝒯 correspond to one or more of the quarters Q1-Q4, we need to estimate

quantities like the expected prediction when all values except e.g., those in Q2 are known,
i.e. 𝑣({𝑄1, 𝑄3, 𝑄4}) = E[𝑓(𝑥)|𝑥𝑄1,𝑄3,𝑄4]. By once again relying on Monte Carlo integration,
we need samples from (an approximation of) the conditional distribution 𝑝(𝑥𝑄2|𝑥𝑄1,𝑄3,𝑄4).
We approximate this distribution by sampling from the training data and then adjusting these
samples so that they align with the individual we want to explain. To explain this adjustment
we refer to Figure 4: The endpoints of the sampled series (the green series) will not connect
with the end points of our individual’s series. To make this happen, we take the difference
between the sampled series and the line connecting the end points (dashed green line) and
add this difference to the line connecting the endpoints of our individual’s series (dashed red
line). This adjusted series is shown as the bold blue line. The entire bold curve is used when
estimating 𝑣(𝒯 ).
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Figure 4: Time series of the individual we want to explain (solid red), one sample series (solid green) for
period Q2. The straight dashed lines are fit to the end points of the two series. The adjusted time series
(solid blue) is the green series adjusted to the dashed red line. This adjusted series is used to estimate
𝑣({𝑄1, 𝑄3, 𝑄4}).

In order to put more weight on ‘similar’ sampled time series, the samples are weighted based
on the Euclidean distance between the known parts of the samples and the individual series
using a Gaussian kernel. Finally, 𝑣({𝑄1, 𝑄3, 𝑄4}) is estimated for one individual by taking a
weighted average of the predictions produced by these samples.

The groupShapley values of four fictive individuals are shown in Figure 5. The groupShapley
values are small for individual 1. The last two quarters increase the probability of default,
perhaps as a consequence of increased and reduced balance amounts, respectively, as seen
in Figure 3. Individual 2 also has a small probability of default, and here Q2 stands out with
the largest groupShapley value, perhaps as a consequence of rapid movements in the balance
combined with an overall low balance. The balance increases significantly in Q4, which is a
likely reason for it’s negative groupShapley value.

The last two individuals have rather high probabilities of default. For individual 3, one may
guess that the high volatility in Q1 leads to the high probability of default. However, based on
Figure 3, it is rather the constant decrease in the balance throughout Q3 and Q4 that increase



Figure 5: Estimated groupShapley values for four individuals in the time series default prediction
example, using yearly quarters as groups.

the probability the most – which be naturally explained by the correspondence between lack of
income and financial problems. For the fourth individual, all quarters increase the probability
significantly, but Q1 and Q2 are the most significant. This is perhaps due to the very low account
balance in these periods. Surprisingly, Q3 is not as decisive, but this might be because the
balance increases steeply in this period.

This example illustrates the use of groupShapley on a time series classification problem. Time
series problems are a natural use case for groupShapley because of the natural groupings of the
features (time segments), and the number of features (time points) is almost always more than
what is computationally feasible with Shapley values methodology.

5. Conclusion

We have introduced groupShapley and showcased how the method can be used to explain
predictions from complex machine learning models. As long as the number of groups is limited,
the approach bypasses the well-known computational bottleneck of feature-wise Shapley values.
Through a series of real data use cases, we demonstrated how groupShapley provides efficient,
simple, and informative prediction explanations.

In addition to the examples discussed in the paper, there is a range of other use cases where
groupShapley is particularly relevant. One example is the explanation of individual categorical
features which have been encoded (using e.g., one-hot encoding) as numeric features in order
to use a predictive model that requires numeric input, see also [29]. This might be viewed as an
alternative to the approach in [6] for computing feature-wise Shapley values in the presence
of categorical features. Another example is in image classification. It is well known that deep
learning models used in modern image classification are notoriously difficult to understand. By
grouping single pixels into groups (or super pixels [45]), groupShapley can be used to explain
such models.

Moreover, groupShapley is well suited to high dimensional health and mortality problems



in bio statistics and epidemiology. For example, groupShapley could be used with data from a
national health directory (e.g., NHANES [46]) to explain groups of features like demographics,
diet, lab results, and medications, rather than the hundreds of individual features typically
present in such data sets. Finally, groupShapley is a completely general method that can be used
in a range of other Shapley value settings. In addition to the prediction explanation setting, it
can be used analogously as a global explanation method [47, 48], or even outside the fields of
XAI and interpretable machine learning [49].
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