INVESTIGATING MESH BASED APPROXIMATION METHODS FOR THE NORMALIZATION
CONSTANT IN THE LOG GAUSSIAN COX PROCESS LIKELIHOOD
(SUPPORTING INFORMATION)

MARTIN JULLUM

In this supporting information we derive an analytical formula for the integral [, exp(Z(s))ds under the finite
element method based mesh assumption

q
(S.1) Z(s) ~ 7" (s) = Zngbj(s),

=1

as described in Section 2.2 of the main paper. The formula is found by reformulating and rewriting parts of existing
quantities, essentially splitting the integrand into simpler functions and the observation domain € into triangles, and
then solving all of those separately. Recall from Section 2.2 of the main paper that we may write

K Lj
(S.2) Q=T
i k

where for each i = 1,...,K, the Tji,...,Ti, are the L; disjoint triangles whose union is equal to the part of the

observation domain which falls in mesh triangle Ti(M). As a consequence of this construction, if we have s € T;y for

some k, then we also have s € Ti(M).

Moving over to the basis functions ¢;(s), let M; be the union of all mesh triangles Ti(M) where mesh node j is a corner

point. Writing 1) for the indicator function of an event E, we can write the linearly independent finite element type
of basis functions ¢1(s), ..., ¢q(s) on the form

q
(83) ¢J (S) = Z 1{T.(M)CMj}l{sCT.(M)}fji(s)’ j=1...,q
. 1 1 1

i=

where the fji(s) are linear functions defined for all combinations of j and i where T; € M;. Let us then write

fii(s) = f5i(x,y) = (1,x, y)A = aji + Biix + %51,
where the coefficient vector AU = (aji,ﬂji,fyji)—r depends on the locations of the corners of triangle Ti(M) Let us
further write xj, y; for the x- and y-coordinates of mesh node j, and xjio, yji0 and Xjio0, Yjipo for the coordinates of the
other two triangle points of triangle Ti(M). Then, as ¢;j(s) takes the value 1 in (xj,y;) and 0 in both (xjio,jip) and
(Xji00, ¥jioo), the precise forms of the coefficients in A0Y can be found by solving the linear system BUDAG) = b, for

20D where

- 1 Xj Yj 1
BU) = |1 Xjio  Yjio and b=1{0
1 X500 Yijioo 0

Doing that gives
aji = (Xji0¥jioo *inooyjioo)/det(B(Jl)), Bii = (¥jio — inoo)/det(B(Jl)% ~ii = (xji00 — xji0)/ det(BUY),
where
det(BY) = (x5i0ji00 — Xji00¥ji0) ~ (Xj¥jioo — Xji00¥;) + (Xj¥jio — Xjio¥;)-
Since each of the basis functions only takes non-zero values within triangles where the mesh node in question is a

corner point, there are always exactly three basis functions that take non-zero values within each mesh triangle Ti(M)
(and therefore also within all subtriangles Tjq, ..., Tir;). These basis functions are the ones taking the value 1 at the

corner points of mesh triangle Ti(M). Let us denote this unordered set of mesh node indices by

(S.4) {i1,i2,i3} = {j : ¢j(s) > 0 for any s € Ti(M)}, fori=1,...,q.
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Thus, utilizing the assumptions of (S.1), in addition to the simplifications in (S.2), (S.3) and (S.4), we have that for all
k=1,...,L; withi=1,...,K, the integral over T;) simplifies as

a 3

/ exp ZZjd)j(s) ds:/ exp Zzijfiji(s)

Tix j=1 Tik j=1

Further, since we have seen that [, exp(Z*(s))ds is just a sum of such integrals, we have that

K i K
/ exp(Z*(s))ds = Z / exp(Z*(s))ds = Z / exp szcbj(s) ds
A i=1 k=17 Tix i=1 k=17 Tix =1
(S.5)
K Lj 3
:Z / exp Zzijfijl(s) ds
i=1 k=1" T j=1

Thus, we can split the full integral into a sum of integrals over the triangles in the observation domain, each of which
has an integrand which is the exponential of a linear combination of three linear functions of known form. We can
therefore handle one of the integrals at a time, analytically. For the reminder of this section we therefore consider
solving the integral

3

(S.6) /F exp Zzijfiji(s) ds.
ik

j=1

To solve the integral in (S.6) analytically, we first apply a change of integration variable to simplify the observation
domain. Denote the coordinates of the corner points of triangle Tj, by x( ),yl(k ), 1(113)73’1(1](3) and x(kc) .(C). The

following function will transform the triangle with corner points (0,0), (0, 1) (1,0) to the triangle Tjy: glk(u, v) =
(8x,ik (1, V), 8y ik (1, V)), where

B A C A
()—i—u(() ())—|—v(() Xi(k))7

) 4oy Oy

Ex,ik (W, V) =
By, v) = v+l -
The Jacobian determinant of g, (u,v) is given by

A (C) «A)

g e e

1(k ))(yi(kC) _ yi(li\)) —( (€ _ X(A))(y(B) _ (A)).

Jg,ik(u,v) Xik ik ik~ Yik

‘ (P

Since Jg ik (u, v) is constant we write it simply as Jg 5. Applying integration by substitution using gy (u, v), we have
that

3 1 pl-v 3

(8.7) / exp [ >z fii(s) | ds=|Jgul / / exp [ D 7 fiji (g (0, V), 8y i (10, v)) | dudy

Tik P 0 Jo P

j=1 j=1
To give the precise formula for this integral we shall introduce some simplifying notation. Let us write the exponent as
3
(SS) Z Zi; f gx 1k u V) gy,ik(uv V)) = a?k + ﬁi*ku + 'Yi*kvv
j=1

where

ok = ZZIJ a]Jka B = ZZIJ Bukv Yk = ZZIJ ’Yukv

j=1 j=1

A
aljk = Qi + 51J1X1k) + lele( )

Bl =BGy o) + i - v

Vi = Bii (9 - “U+m¢<@—ﬁﬁy
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Assuming neither B, ik, nor Bix — vk are zero, we can, using the simplified notation in (S.8), express (S.7) as

1 v 1
* * * 1 *
Ug,ik|/0 /0 exp (afi + Biku+ yikv) dudv = |Jg ik eXp(aik)/O exp(YikV) {T (exp(Bik(1-v)) — 1)} dv
ik

exp(ady) [exp(Bi " . 1 «
= g Z22) [P o - 1) o (eploio - )]
ik Ve ~ Bk Tk

- |Jg,ik|% B (exp(ri) — 1) — i (exp () — 1)] -

For the special cases where either Sy, vik or Bik — Vik are exactly zero, the integral takes even simpler forms, computed
analogously. The final expression for the sub-integral in (S.6) is therefore
|Jg,ik|%ai*k): if B =7 =0,
. k| S exp() - 1=+ if B = 0.7 £,
(S.9) / exp Z zj¢i(s) | ds = [Jg,ixl e?gi*a)rzk) lexp(Bi) —1-Bi], if B # 0,7k =0,

e T S (14 exp(B3) (85— D) iF B = i £0,

ik g i B3 (exp(vi) ~ 1)~ Yi(exp(B3) ~ 1), otherwise,

The final formula for [, A(s)ds is thus found inserting (S.9) into (S.5).




