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Summary. The Greenland Sea is an important breeding ground for harp and hooded
seals. Estimates of the annual seal pup production are critical factors in the abundance
estimation needed for management of the species. These estimates are usually based
on counts from aerial photographic surveys. However, only a minor part of the whelping
region can be photographed, due to its large extent. To estimate the total seal pup pro-
duction, we propose a Bayesian hierarchical modeling approach motivated by viewing the
seal pup appearances as a realization of a log-Gaussian Cox process using covariate in-
formation from satellite imagery as a proxy for ice thickness. For inference, we utilize the
stochastic partial differential equation (SPDE) module of the integrated nested Laplace
approximation (INLA) framework. In a case study using survey data from 2012, we com-
pare our results with existing methodology in a comprehensive cross-validation study. The
results of the study indicate that our method improves local estimation performance, and
that the increased prediction uncertainty of our method is required to obtain calibrated
count predictions. This suggests that the sampling density of the survey design may not
be sufficient to obtain reliable estimates of the seal pup production.

1. Introduction

Three stocks of harp seals (Pagophilus groenlandicus) and two (possibly three) stocks
of hooded seals (Cystophora cristata) inhabit the North Atlantic Ocean where they
have been harvested for centuries (Sergeant, 1974, 1991; Kovacs and Lavigne, 1986).
Monitoring the abundance of seals is vital for controlling the biodiversity in the region.
State-of-the-art seal population models are dynamically built based on historical catch
data (Øig̊ard et al., 2014a,b). The main ingredient in these models is the total pup
production in a given year which needs to be quantified based on on-site observational
data since other quantification methods based on catch-at-age and mark-recapture data
etc. are considered unreliable (ICES, 2014). The whelping regions in the North Atlantic
typically cover several thousand square kilometers so that the total pup production
needs to be estimated based on observations from a minor part of the region. Both the
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estimated total pup production and the associated uncertainty are then used as input
in dynamic population models (Øig̊ard et al., 2010).

The observational data consists of seal pup counts obtained by manual counting on
photographs. The photographs stem from an aerial photographic survey conducted by
flying along transects sparsely covering the whelping region. The survey methodology
is discussed in more detail in Section 2. The traditional method for estimating the total
pup production based on such count data is that of Kingsley et al. (1985) which assumes
a homogeneous dispersion of seals across the entire whelping region. Salberg et al.
(2009) propose a generalized additive modeling (GAM) approach (Hastie and Tibshirani,
1990), assuming the counts follow a negative binomial distribution and taking the spatial
location of the counts into account. For data that is close to homogeneous, the negative
binomial GAM approach and the Kingsley method yield similar estimates. However, the
Kingsley method may possess a positive bias when the spatial distribution of the pups
is clustered (Salberg et al., 2008; Øig̊ard et al., 2010). Additionally, the GAM method
produces much smaller uncertainty bounds than the homogeneous Kingsley approach.

In this paper, we propose a new method for estimating the total seal pup production.
We view the seal pup appearances as a spatial point process (Møller and Waagepetersen,
2003) and model the point pattern of the seal pups as a log-Gaussian Cox process (LGCP;
Møller et al., 1998) with a spatial latent field which also allows additional covariate in-
formation to be accounted for. In a Bayesian formulation with priors on the model
parameters, the seal pup production estimate is represented by the posterior predictive
distribution found by integrating the posterior distribution over the spatial domain of
the whelping region, instead of a single point estimate accompanied with a variance es-
timate. This Bayesian hierarchical model can be fitted by utilizing the stochastic partial
differential equation (SPDE) approach of the integrated nested Laplace approximation
method (INLA; Lindgren et al., 2011; Rue et al., 2009). The final posterior predictive
distribution can subsequently be computed from this fitted model by a sampling ap-
proach. Although more traditional Markov Chain Monte Carlo (MCMC) methods in
theory could be used to arrive at the same posterior, application of INLA allows results
to be produced magnitudes faster, at a negligible cost in terms of accuracy.

To illustrate and test this methodology, we use seal pup photo counts from an aerial
photographic survey in the Greenland Sea in March 2012 with two different types of seals,
harp and hooded seals. The data set contains the spatial location of each photo and
the corresponding pup count. To be more informative about the non-observed areas, we
include covariate information extracted from satellite imagery captured on the very same
date as the aerial photographic survey was conducted, to act as a proxy for ice thickness.
This is important as the seal pups can only be observed on ice, with non-observable pups
accounted for within the dynamic population model (Øig̊ard et al., 2010). Compared
to the other procedures our method gives larger uncertainties, especially for the harp
seals. To validate these differences, we compare our proposed method with a number of
reference methods in two cross-validation experiments, one where random sets of photos
are removed and one where whole transects are removed from the data set prior to
inference. Performance assessment based on proper scoring rules suggests our method
performs best on a local level, and comparable on a more global scale. Further calibration
assessment suggests that the larger uncertainty in our method is indeed more realistic.



Estimating seal pup production 3

The rest of the paper is organized as follows: Section 2 describes the survey method
used to gather seal pup observational data, in addition to specific details related to
our particular seal pup data set. The satellite imagery and the covariate information
extracted therefrom are also discussed. Relevant background related to point processes
and aggregated point patterns are given in Section 3. Section 4 describes the details
of our suggested modeling approach and three references methods that we compare
our method against. The validation schemes used to verify and compare the different
approaches are also described. The results are presented in Section 5, including specifics
of the model fitted with our procedure, and the validation and comparison results. The
final Section 6 contains concluding remarks and pointers to future work. The online
supplementary material contains a brief description of the INLA methodology and details
about specification of the so-called mesh used by that methodology.

2. Data

In this section we describe the survey method and additional modeling information we
have obtained through satellite imagery.

2.1. Survey method

Before conducting the aerial photographic survey with the purpose of monitoring the
seal pup production, the marine researchers typically perform a helicopter reconnais-
sance survey. This is done in order to locate the patches where the seals whelp for
limiting the survey area for the more expensive airborne photographic survey. The ac-
tual photographic survey is conducted by flying a survey aircraft equipped with advanced
photographic equipment and GPS along a number of transects at a fixed distance that
sparsely cover the survey area.

In this particular survey in March 2012, the airplane flew at an altitude of about
330m, and took a total of 2792 photos along 27 parallel transects, approximately 3Nm
(≈ 5.6km) apart, with each photo covering 226× 346m of ground level. Due to fog, an
exception was made for the two southernmost transects, which were flown at an altitude
of 250m, with the photos covering 170× 260m. Care is taken to record non-overlapping
photos. Some overlaps appear in the data, but since the overlaps are so small and
completely irrelevant for practical purposes, we assume non-overlap in the subsequent
analysis. Along each transect, the cameras were turned on when the first seal was spotted
from the airplane, and photos were taken continuously until the ice edge was reached on
the eastern side, and until no seals were spotted for an extended period to the west. As
a consequence of this survey setup, the whelping region is approximately defined as the
union of the 1.5Nm (≈ 2.8km) bands around each transect. Thus, when estimating the
total pup production in the whelping region, we only count predictions within this area.
More details about the survey may be found in Øig̊ard et al. (2014a,b).



4 Jullum, Thorarinsdottir & Bachl

2.2. Seal pup counts
Following the airborne survey, experienced marine researchers manually count the num-
ber of seal pups of each species in each photo†. Quality checks with multiple exami-
nations are performed to limit the measurement error introduced in this step (Øig̊ard
et al., 2014a,b). The seal pup count data set used on the subsequent analysis contains
the coordinates and extent of each photo, in addition to the number of seal pups of each
species observed. The data are plotted in Figure 1 along with the transect locations and
the extent of the whelping region. As seen from the figure, there tends to be more seal
pups clustered towards the middle eastern boundary and southern corner of the whelp-
ing region. Comparatively more harp seal pups are observed than hooded seal pups and
the spatial distribution of the former seems less homogeneous.
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Fig. 1. Harp and hooded seal pup count data from the Greenland Sea 2012 survey, with east-
west direction on the x-axis and north-south direction on the y-axis.

2.3. Satellite imagery
For whelping, the seals require large ice floes with access to the ocean for the adult
seals to access food. Information regarding which areas are covered by ice floes and
which areas are merely open water, is thus potentially highly relevant when estimating
the seal pup production. In an attempt to account for this, we have collected high
resolution satellite imagery (Modis) from the whelping region captured on the same day
as the airborne photographic survey was conducted. From this satellite imagery we have
extracted a variable which acts as a proxy for the ice thickness. This density variable is
displayed in Figure 2. Comparing the satellite data to the seal pup counts in Figure 1,

†The exact position of the seals are not recorded.
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we see that the seal pup counts appear to be higher in the areas with high ice density,
than in areas with lower ice density.
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Fig. 2. Satellite data showing ice density used as a covariate in the model fitting process.

3. Background

In the present paper, we assume that the seal pup appearances can be thought of as a
realization of a point process. The aim of the analysis is to estimate the total number of
seal pups, N(Ω), in the whelping region Ω ⊂ R2 (indicated in black in Figures 1 and 2).

3.1. Point processes
A spatial stochastic point process is a mathematical description of the random process
through which points or locations are distributed in space. The collection of such obser-
vations is called a point pattern. In informal mathematical terms, a spatial point process
Y is a random collection of points in a bounded observation region Ω ⊂ R2 where both
the number of points and their locations are random. The most fundamental type of
point process is the Poisson point process. It may be specified by a deterministic in-
tensity function λ : Ω 7→ [0,∞) which determines the (localized) expected density of
points per unit area in Ω. The number of points, N(B), of any Borel set B ⊆ Ω is
Poisson distributed with mean µ(B) =

∫
B λ(s) ds, i.e. N(B) ∼ Po(µ(B)). Further,

N(B) is independent of N(B∗) for any other non-overlapping Borel set B∗ ⊆ Ω with
N(B ∪B∗) = N(B) +N(B∗).

The Cox process (also known as the doubly stochastic Poisson point process) intro-
duced by Cox (1955) is a generalization of the Poisson point process where the intensity
function λ is in itself stochastic. A popular special case of this hierarchical model is the
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log-Gaussian Cox process (LGCP) (Møller et al., 1998), where the intensity is assumed
to be log-Gaussian; i.e. there is an underlying latent Gaussian random field Z, and given
λ = exp(Z), Y is a Poisson point process with intensity λ. This type of model is quite
flexible and useful for modeling a great variety of natural processes, in particular when
only a single realization of the process is available (see e.g. Diggle, 2013; Illian et al.,
2008; Møller and Waagepetersen, 2003). The LGCP model can describe various types
of clustering in the point pattern through the positive semi-definite correlation function
of the underlying Gaussian process (Møller et al., 1998).

Wolpert and Ickstadt (1998) consider a Cox process where the stochastic intensity
function is given by λ = Γ for a latent gamma random field Γ. As before, the con-
ditional distribution of N(B) given λ is a Poisson distribution. For this model, the
marginal distribution of N(B) is available in closed form and given by a negative bino-
mial distribution (Matérn, 1971; Diggle and Milne, 1983).

3.2. Models for aggregated point patterns
As mentioned in Section 2.2, the exact positions of the counted seal pups are not available
in the survey data. Instead, the seal pup counts are provided as aggregated counts per
photo. Thus, our data is a partly observed point pattern aggregated to counts on
an irregular lattice, as opposed to the actual point pattern. Methods that fit doubly
stochastic Poisson process models to point pattern data, such as those proposed by
Wolpert and Ickstadt (1998), Simpson et al. (2016) and Yuan et al. (2017), are thus not
directly applicable. Rather, our setting can be viewed as an extension of the approach
considered in Rue et al. (2009) where a fully observed point pattern is approximated by
the corresponding counts on a regular lattice.

To this end, let N(Ai) for i = 1, . . . , n denote the number of seal pups in each
of the n = 2792 photos with domains Ai ⊂ Ω and (potentially varying) areas |Ai|
for i = 1, . . . , n. Per properties of Poisson driven point processes, conditional on the
intensity λ, being either deterministic (Poisson process) or random (Cox process), we
have that N(Ai) is Poisson distributed with parameter µ =

∫
Ai
λ(s) ds, i.e.

N(Ai) |λ ∼ Po
(
µ =

∫
Ai

λ(s) ds
)
, i = 1, . . . , n. (1)

Working under a Bayesian paradigm, we obtain an estimate of the total number of seal
pups in Ω given by the posterior predictive distribution of N(Ω),

p
(
N(Ω) |N(A1), . . . , N(An)

)
=

∫
p
(
N(Ω), λ |N(A1), . . . , N(An)

)
dλ

=

∫
p
(
N(Ω) |λ

)
p
(
λ |N(A1), . . . , N(An)

)
dλ,

(2)

where N(Ω) |λ ∼ Po(µ =
∫

Ω λ(s) ds). The estimate for N(Ω) is thus given by a mixture
of Poisson distributions rather than a single Poisson distribution under both determinis-
tic and the random models for the intensity function λ. As the data are overdispersive,
this may improve the fit of the Poisson model.
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Table 1. Summary of observation models for seal pup counts per photograph and associated
inference approaches. If the inference is performed based on an R-package, the package is
listed in parenthesis. Here, s is a spatial index, λ0, α and β are coefficients, x is a vector of
covariates, f denotes a latent spatial random effect, and S a deterministic spatial smoothing
component. MPLE is an abbreviation for maximum penalized likelihood estimation.

Name Observation model Intensity Inference approach

LGCP Poisson exp(α+ β>x(s) + f(s)) Bayesian with SPDE-INLA
(INLA)

GAM Po Poisson exp(α+ β>x(s) + S(s)) MPLE with Bayesian estimator
of uncertainty (mgcv)

GAM NB Negative Binomial exp(α+ β>x(s) + S(s)) MPLE with Bayesian estimator
of uncertainty (mgcv)

Hom Po Poisson λ0 Bayesian

The negative binomial distribution is a common choice for modeling random counts
in applications with clustering. Due to the overdispersion in the data, Salberg et al.
(2009) model the seal pup counts using a generalized additive model (GAM) based on a
negative binomial likelihood. Diggle and Milne (1983) show that only two point process
models yield a negative binomial marginal count distribution. One such model is the
so-called compound Poisson process where each point of an underlying Poisson process
is replaced by a random number of coincident points where the numbers are independent
and identically distributed according to a logarithmic distribution. The second example
is the Cox process with an intensity function given by a gamma random field considered
by Wolpert and Ickstadt (1998). Similarly, if a Poisson process has a constant intensity
and the inference is performed using a conjugate gamma prior distribution for λ, the
resulting posterior predictive distribution in (2) is a negative binomial distribution, see
Section 4.3 below.

4. Methods

We consider four different approaches to modeling the seal pup counts per photograph,
see the summary in Table 1. Our new proposed method is based on the LGCP frame-
work and accounts for potential clustering, or overdispersion, in the data through the
underlying latent Gaussian random field. This approach is compared to the following
reference approaches: A GAM approach previously proposed by Salberg et al. (2009)
and Øig̊ard et al. (2010) under both a Poisson and a negative binomial likelihood, and
a homogeneous Poisson model. The methods and the associated inference approaches
are described below. In addition, we also compare these spatial methods to a reference
approach that estimates only the total number of seal pups in the region (Kingsley et al.,
1985), see Section 4.3 below.
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4.1. Stochastic intensity model
Our proposed approach (LGCP) is based on a Poisson point process with a stochastic
intensity function (i.e. a Cox process). The stochastic intensity function takes the form

λ(s) = exp(Zf (s)), (3)

where Zf is a Gaussian random field, or an LGCP with a conditional distribution for
the aggregated counts on the form of (1). The continuous Gaussian random field takes
the form

Zf (s) = α+ β>x(s) + f(s), (4)

where α is an intercept term, β are regression coefficients for x(s) = (q(s), s1, s2,
√
s2

1 + s2
2)>,

with q(s) containing the ice density variable from the satellite imagery, while s1, s2, and√
s2

1 + s2
2 model linear spatial effects for s = (s1, s2)> ∈ Ω. Finally, f(s) is a (non-linear)

continuous Gaussian random field meant to model spatial dependence not captured by
the covariates in x. Specifically, f(s) is given the Matérn covariance function of the form

Cov(f(s), f(t)) =
σ2

2ν−1Γ(ν)
(κ‖s− t‖)νKν(κ‖s− t‖), (5)

for s, t ∈ Ω where ν > 0 is a smoothing parameter, Kν is the modified Bessel function of
the second kind, κ > 0 is a scaling parameter and σ2 is the marginal variance. Further,
for identifiability of the intercept term in (4), we restrict f(s) to integrate to zero over
the modeling region.

Note that the model defined by (1), (3) and (4) is equivalent to the Poisson log-normal
model of Christensen and Waagepetersen (2002) which is a special case of the spatial
generalized linear mixed model framework proposed by Diggle et al. (1998). Christensen
and Waagepetersen (2002) employ a Markov chain Monte Carlo (MCMC) algorithm for
model inference using a slightly simpler covariance structure than the Matérn covariance
function in (5) to analyze a data set where the observation sets {Ai}ni=1 are given by
discs of fixed radius. Similar methods based on Poisson kriging are discussed in e.g.
Bellier et al. (2010) and De Oliveira (2014) where more traditional geostatistical inference
methods are employed.

4.1.1. Inference

To obtain an approximation to the posterior predictive distribution in (2), we apply
the integrated nested Laplace approximation (INLA) of Rue et al. (2009) that allows
for computationally feasible approximate Bayesian inference with discrete space latent
Gaussian models, see Section 1 in the online supplementary material for a brief descrip-
tion. The stochastic partial differential equation (SPDE) approach of Lindgren et al.
(2011) extends the INLA framework to also handle models with continuous latent fields
as in (4). The SPDE approach is based on transforming the continuous latent field to
a certain Gaussian Markov random field (GMRF), formulated through the solution of a
SPDE. The key point is to approximate the continuous field Z(s) by a field ZGMRF(s)
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living on a triangular mesh. For a triangular mesh with m triangle vertices, we write

ZGMRF(s) =

m∑
j=1

zjφj(s), (6)

where z = (z1, . . . , zm)> is a multivariate Gaussian random vector and {φj(s)}mj=1 is a set
of deterministic linearly independent basis functions which are piecewise linear between
the vertices and chosen such that φj(s) is 1 at vertex j, and 0 at all other vertices.
A consequence of the representation in (6) is that ZGMRF(s) is fully determined by z.
That is, ZGMRF(s) takes the value zj at vertex j while its values inside the triangles are
determined by linear interpolation.

Assume now that Z(s) is equipped with the Matérn covariance function in (5). As
this type of field is a solution to a certain SPDE, the precision matrix Q of z takes an
analytical form which can be approximated by a sparse matrix Q̃. Since ZGMRF(s) is
completely determined by z, this allows continuous field computations to be carried out
approximately using the INLA implementation. Note that following certain guidelines
for constructing the triangular mesh, the resulting approximation error is typically small
(Lindgren et al., 2011; Simpson et al., 2012). For a complete introduction and review of
the INLA framework, including the SPDE approach, see e.g. Blangiardo and Cameletti
(2015) and Rue et al. (2016).

4.1.2. Model specification and fitting
The model parameters to be estimated are the regression parameters (α,β) in (4) and
the hyperparameters (ν, κ, σ2) of the Matérn covariance function in (5). To improve
identifiability, we fix the Matérn smoothing parameter at ν = 2, as is common when
applying the INLA framework (see e.g. Blangiardo and Cameletti, 2015). The other
hyperparameters related to the latent field are equipped with mesh dependent default
priors specified by the INLA software. For our mesh these are θ1 ∼ N (1.328, 10) and
θ2 ∼ N (−2.594, 10), where θ1 = log(τ) and θ2 = log(κ), with σ2 = 1/(4πκ2τ2). The
intercept term α is assigned the improper prior N (0,∞) while β ∼ N (0, 1000 I4), where
I4 denotes the 4 × 4 dimensional identity matrix. All these priors are non-informative
and they seem to influence the final results to a very limited degree. The alternative use
of penalized complexity (PC) priors (Simpson et al., 2017) resulted in very similar final
results.

Using the triangular mesh described in Section 2 of the supplementary material, the
INLA software produces posterior distributions for all individual hyperparameters, and
enables sampling from the posterior of the complete latent field

p(Z |N(A1), . . . , N(An)),

through the approximation of Z(s) by ZGMRF(s), see Blangiardo and Cameletti (2015,
Ch. 8.2). This allows us to use a Monte Carlo approximation for the integral in (2):∫

p(N(Ω)|Z)p(Z|N(A1), . . . , N(An)) dZ ≈ 1

K

K∑
k=1

p(N(Ω)|Z̃k),
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where Z̃k is the k-th sample of the posterior latent field. We use K = 10 000 in this and
similar Monte Carlo integrations throughout the paper. Further, by the point process
properties,

p(N(Ω) |Z = Z̃k) ∼ Po
(
µ =

∫
Ω

exp(Z̃k(s)) ds
)
.

The integral
∫

Ω exp(Z̃k(s)) ds can be solved by e.g. a simple Riemann midpoint rule. This
is achieved by dividing Ω into J ≈ 40 000 rectangles B1, . . . , BJ centered in s1, . . . , sJ ,
similar in size to the individual photos {Ai}ni=1, and using

∫
Ω exp(Z̃k(s)) ds ≈

∑J
j=1 exp(Z̃k(sj))|Bj |

where the values Z̃k(sj) are derived using (6). To find the J sets, the full modeling re-
gion is covered by a regular grid and the cells within the whelping region are selected.
The final approximation to the posterior predictive distribution is thus

p
(
N(Ω) |N(A1), . . . , N(An)

)
≈ 1

K

K∑
k=1

Po
(
µ =

J∑
j=1

exp(Z̃k(sj)) |Bj |
)
, (7)

i.e. a Poisson mixture distribution.

4.2. Inhomogeneous intensity model
An alternative to the stochastic intensity function in (4) is a deterministic inhomogeneous
intensity. With only one realization of the point pattern, it is generally not possible to
distinguish between a doubly stochastic Poisson process and an inhomogenous Poisson
process (Møller and Waagepetersen, 2003). However, the underlying assumptions re-
garding the data structure and the components of the intensity model vary somewhat so
that the resulting predictive distributions may differ. In particular, the LGCP assumes
clustering through positive correlation between nearby locations in the underlying ran-
dom field model while for an inhomogeneous Poisson process, each point is stochastically
independent of all the other points in the process (see e.g. Møller and Waagepetersen,
2003).

The models we use here are motivated by the work of Salberg et al. (2009) who model
the seal pup production by a generalized additive model (GAM) based on a negative
binomial likelihood, except that they do not include covariate information. Apart from
adding covariates, the below approach follows that of Salberg et al. (2009) and Øig̊ard
et al. (2010). Salberg et al. (2009) argue that a negative binomial likelihood should be
used rather than a Poisson likelihood due to overdispersion in that data. However, as the
inhomogeneous intensity and the Poisson mixture in the posterior predictive distribution
may improve the fit of the Poisson model, we find it natural to include the inhomogenous
Poisson model in our list of models.

4.2.1. Poisson model
The inhomogeneous Poisson model takes the conditional Poisson form of (1) with inten-
sity function λ(s) = exp(η(s)) given by

η(s) = α+ β>x(s) + S(s), (8)
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where S(·) is a spatial smoothing component given by a thin-plate smoothing regression
spline (Wood, 2003), i.e. a smooth, nonlinear deterministic spatial effect. As noted by
Wood (2017, Ch. 5.8) there is a certain duality between the smoothing component S(·)
in (8) and the Gaussian random field f(·) in (4) in that S(·) can be interpreted as the
mean of a latent random field. An assessment of uncertainty in the estimation of S(·)
then corresponds to an assessment of the uncertainty in the mean of the random field.

To fit the model in (8), we follow Salberg et al. (2009), and rely on the gam function
in the R-package mgcv (Wood, 2017). This function fits the model

N(Ai) ∼ Po
(
µ = |Ai| exp(η(si))

)
, for i = 1, . . . , n,

with the |Ai| values as fixed offsets with overlapping cubic regressions on a set of artificial
knots in space, and Ai centered in si. An unbiased risk estimator (UBRE) is used to
select the right amount of smoothing (Wahba, 1990; Wood, 2006).

The method returns maximum penalized likelihood estimates (MPLE) for the regres-
sion parameters α,β and parameters ν associated with the spatial smoothing component
S(·), θ = (α,β,ν) (see e.g. Wood, 2017). To account for the uncertainty involved in the
Poisson model, results of Silverman (1985) are used to obtain a posterior distribution
for θ of the form

N
(
θ,Cov(θ)

)
, (9)

see also Wood (2006) and Salberg et al. (2009). We sample from (9) and approximate
the integral over Ω by a simple Riemann midpoint rule using the J rectangles B1, . . . , BJ
centered in s1, . . . , sJ with B1 ∪ . . . ∪BJ ≈ Ω, as in (7). This gives the approximation

pGAM Po

(
N(Ω) |N(A1), . . . , N(An)

)
≈ 1

K

K∑
k=1

Po
(
µ =

J∑
j=1

|Bj | exp(ηθ̃k(sj))
)
, (10)

where ηθ̃k(sj), is the value of (8) using θ-parameters corresponding to the k-th sample
from (9).

4.2.2. Negative binomial model
An alternative to the inhomogeneous Poisson model is to consider the negative binomial
model

N(Ai)|λ ∼ NegBin
(
µ =

∫
Ai

λ(s) ds, τ
)
, (11)

with λ(s) = exp(η(s)) where η(s) is given in (8), and shape parameter τ . This model is
fit in the same manner as the Poisson model above using

N(Ai)|λ ∼ NegBin
(
µ = |Ai| exp(η(si)), τ

)
, for i = 1, . . . , n.

In contrast to the Poisson distribution, the negative binomial distribution is not closed
under addition for different mean values. Thus, to arrive at a full posterior predictive
distribution for the total seal pup count N(Ω) under the model in (11), we employ
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a sampling procedure that relies on an underlying conditional independence condition
stating that conditional on µ and τ , the point counts in disjoint sets are independent.
Again, using the J disjoint sets B1, . . . , BJ , we sample counts

Nk(Bj)|λ ∼ NegBin
(
µ = |Bj | exp(ηθ̃k(sj)), τ = τ̂j

)
, for j = 1, . . . , J ; k = 1, . . . ,K,

where sj is the center point of Bj , ηθ̃k(sj) is sampled from (9) as in (10), and τ̂j is the
estimated shape parameter for Bj . The posterior predictive distribution for N(Ω) is
then given by the empirical distribution function of {Nk(Ω)}Kk=1 where

Nk(Ω) =

J∑
j=1

Nk(Bj), for k = 1, . . . ,K.

Both the sampling from the asymptotic normal distribution in (9) and the conditional
independence assumption employed above, are also used by Salberg et al. (2009) to
quantify the uncertainty around the total seal pup production.

4.3. Homogeneous intensity model
A simple reference model is a homogeneous Poisson model with a constant intensity.
That is, we set λ(s) ≡ λ0 for a fixed scalar λ0 and assume

N(Ai)|λ ∼ Po(µ = |Ai|λ0), for i = 1, . . . , n.

For a Bayesian inference, we equip λ0 with a non-informative conjugate gamma prior,

λ0 ∼ Γ(a0 = 10, b0 = 10),

for both seal types, where a0 and b0 are the shape and rate parameters, respectively.
This results in the following posterior distribution,

λ0|N(A1), . . . , N(An) ∼ Γ
(
a = a0 +

n∑
i=1

N(Ai), b = b0 +

n∑
i=1

|Ai|
)
.

Moreover, the posterior predictive distribution in (2) takes the form of a negative bino-
mial distribution and is available in a closed form

pHom Po

(
N(Ω) |N(A1), . . . , N(An)

)
=

∫
Po(|Ω|λ0)Γ(a, b) dλ0

= NegBin(µ = |Ω|a/b, τ = a). (12)

where a and b are specified in the posterior distribution for λ0 above.
The motivation for the homogeneous Poisson model is not only that it is a simple

special case of our proposed LGCP model, but also that it is similar to the traditional
approach to estimate seal pup production based on aerial photographic transect surveys,
often referred to as Kingsley’s method (Kingsley et al., 1985). Kingsley’s method is fun-
damentally simple: For each transect T1, . . . , T27 covering the space ATk

=
⋃
{Ai⊂Tk}Ai,
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compute the seal pup count NTk
=
∑

Ai∈Tk
N(Ai). Then, the estimate of the total

number of seal pups is

N̂(Ω) =
|AΩ|∑27
k=1 |ATk

|

27∑
k=1

NTk
. (13)

Kingsley et al. (1985) also provide an estimate of the variance related to the seal pup
production estimate, based on serial differences between the transects. Salberg et al.
(2008) later provided a modification to this variance estimate, which we have used here.
Since this method is not spatial in nature and only provides an estimate for the total
number of seal pups in the study area, it is difficult to properly compare it against the
remaining spatial procedures in a cross-validation set-up where we assess the predictive
performance at photo-level. We will therefore not perform validation tests, as described
in Section 4.4, for this method.

4.4. Verification
We compare the various modeling approaches using a cross-validation scheme where we
rely on two procedures for subsetting the data. The first procedure is a standard 10-
fold cross-validation setup, where we randomly remove 10% of the photos each time,
such that each photo is removed exactly once. In the second procedure we remove all
photos in one full transect at a time, such that each transect is removed exactly once,
leaving us with 27 different subsets. For both procedures, we fit the competing models
for every subset and compute posterior predictive distributions for every photo that is
removed along with posterior predictive distributions for the sum of the removed photos
(corresponding to the full transect for the latter procedure).

We compare the predictive performance of the various modeling approaches using two
performance measures: The logarithmic score (Good, 1952) and the continuous ranked
probability score (CRPS) (Matheson and Winkler, 1976), which both are proper scoring
rules that assess full predictive distributions (Gneiting and Raftery, 2007). Denoting a
generic posterior predictive distribution by g(x), the corresponding cumulative distribu-
tion function by G(x), and the observed count by ytrue, the two performance measures
takes the form

logScore(g, ytrue) = − log(g(ytrue)), (14)

CRPS(G, ytrue) =

∫ ∞
−∞

(G(x)− 1{x>ytrue}(x))2 dx,

where 1{·}(x) denotes the indicator function. For both measures, smaller values reflect
a better model.

Both the logarithmic score and the CRPS are optimized in expectation when the true
data distribution is issued as the forecast (Gneiting and Raftery, 2007). However, in real-
life situations, average scores are often associated with high uncertainty (Thorarinsdottir
and Schuhen, 2018). We thus apply two scores that penalize prediction errors in slightly
different manners, see Figure 3. In particular, the logarithmic score is more sensitive to
outliers, cf. the left plot in Figure 3. For every cross-validation schemes, we present mean
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Fig. 3. Illustration of the logScore (solid lines) and CRPS (dashed lines) functions for different
values of ytrue, with two different predictive distributions (indicated in gray), Po(µ = 3) (left plot)
and Po(µ = 20) (right plot).

scores, where the mean is computed over the different folds. To indicate the variation in
the scores, we compute 90% bootstrapped confidence intervals (CI) of those means by
repeated re-sampling (10 000 times, with replacement) of the fold scores.

We further assess the calibration, or the prediction uncertainty, of the methods by
assessing the coverage of the posterior predictive distributions. That is, we check how
often ytrue lies within different credibility intervals, compared to their intended coverage
– small prediction uncertainty is of no value if it is not reflecting the true variability
of the data. For a calibrated forecast, an event predicted with probability p should be
realized with the same frequency in the observed data. In order to mimic quantification
of the prediction uncertainty for the complete whelping region as closely as possible, we
perform this exercise on the transect level.

5. Results

Here, we present the results obtained when applying the various spatial models/estimation
methods in Table 1 and Kingsley’s method to per-photo count data from the 2012 survey
of the Greenland sea whelping region. We model hooded and harp seals separately as
their occurrences are expected to be independent conditional on the covariate informa-
tion. Specifically, we compare our LGCP approach estimated using SPDE-INLA with
the GAM-based procedure, both with a negative-binomial distribution for the counts
(GAM NB) and with the simpler Poisson distribution (GAM Po). As baseline models
we use a homogeneous Poisson model with no covariates, spatial term, or other random
effects (Hom Po), in addition to Kingsley’s method.

5.1. Hooded seals
Within the flight transect sparsely covering the whelping region, a total of 777 hooded
seal pups were counted. The blue dots in Figure 1 show how these are spread on the
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Fig. 4. The mean and standard deviation of the random field Zf (s) in (4), fitted for hooded seals
with our LGCP approach.

2792 photos, with between 0 and 12 pups per photo.
Figure 4 shows the mean and standard deviation of the random field fitted using our

LGCP procedure outlined in Section 4.1. As seen, the latent field captures the high
intensity of hooded seal pups in the middle-eastern part of the whelping region. This
area has a medium range ice thickness, cf. Figure 2. There is also an increased seal pup
intensity further south, in particular closer to the open water. Generally speaking, as
seen from the standard deviation plot, the uncertainty is rather large where the intensity
is low, while it is smaller where the intensity is high. This means that apart from the
north, one is fairly certain that there are some seal pups in areas where seal pups are
observed nearby, while there could very well exist seal pups in locations where none are
observed at the neighboring observation sites. As a result of very few seals being observed
in the north, the mean intensity here is so low that it is unlikely that a significant amount
of seals have settled there.

The range of the latent field, defined as the distance at which the spatial correlation
is approximately 0.1, has a posterior mean of 3.63 km, or about 2/3 of the distance
between two transects. This means that in an area lying between two transects, the
latent field is essentially determined by the two neighboring transects. Further, the fitted
model gives the following posterior means for the intercept (α) and the fixed effects (β):
meanα = −1.37,meanβ,q = 9.07,meanβ,s1,s2,s12 = (0.07,−0.05,−0.02). Similarly the

GAM NB approach has the following coefficient estimates: α̂ = −2.58, β̂q = 9.59, and

β̂s1,s2,s12 = (0.06,−0.02, 0.03).
Figure 5 shows the posterior predictive distribution for the total pup count in the

whelping region using our LGCP procedure, along with the corresponding results for
the two GAM-based procedures (negative binomial and Poisson response) and the ho-
mogeneous Poisson model. A simple summary of Kingsley’s method is also given for
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Fig. 5. The posterior predictive distributions for the total hooded pup counts in the whelping
region for the five competing models. For Kingsley’s method, we show the point estimate +/-
2 times the estimated standard deviation, corresponding to an approximate 95% confidence
interval under a normal distribution assumption.

Table 2. Summary table for the predictive distributions of the total count of
hooded seal pups in the whelping region.

mean median mode IQR 0.025-quantile 0.975-quantile
LGCP 11649 11503 11472 1699 9472 14741
GAM NB 11178 11157 11093 807 10075 12395
GAM Po 11296 11292 11093 572 10467 12147
Hom Po 11494 11489 11479 571 10678 12338
Kingsley 10928 10928 10928 1969 8067 13789
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Table 3. Validation results on photo level (one prediction per photo) and transect level (one
prediction per transect), respectively. Lower and upper bounds of 90% bootstrapped confidence
intervals for the scores are shown in parenthesis. Cells shown in italics are the best (smallest)
per column. Those which are significantly smaller than the others (defined as having non-
overlapping confidence intervals) are also in bold.

HOODED SEALS: PHOTO LEVEL
Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
LGCP 0.18 (0.16, 0.19) 0.47 (0.44, 0.49) 0.22 (0.20, 0.25) 0.54 (0.51, 0.57)
GAM NB 0.21 (0.19, 0.23) 0.51 (0.47, 0.53) 0.22 (0.20, 0.24) 0.53 (0.50, 0.56)
GAM Po 0.22 (0.20, 0.24) 0.54 (0.51, 0.58) 0.24 (0.22, 0.26) 0.58 (0.54, 0.62)
Hom Po 0.26 (0.24, 0.28) 0.77 (0.71, 0.84) 0.26 (0.24, 0.29) 0.78 (0.72, 0.85)

HOODED SEALS: AGGREGATE/TRANSECT LEVEL
Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
LGCP 5.43 (4.04, 6.99) 3.68 (3.51, 3.86) 9.91 (5.99, 14.80) 3.67 (3.26, 4.09)
GAM NB 5.93 (4.95, 7.00) 3.79 (3.68, 3.91) 9.37 (5.66, 13.63) 3.68 (3.11, 4.27)
GAM Po 5.90 (4.49, 7.42) 3.72 (3.50, 3.96) 10.14 (5.86, 15.09) 4.14 (3.32, 5.01)
Hom Po 4.89 (2.21, 11.06) 3.58 (3.14, 4.65) 20.70 (1.29, 55.68) 12.81 (2.46, 37.28)

reference. Table 2 summarizes the predictive distributions. While the confidence bands
for the five methods largly overlap, Kingsley’s method yields the lowest point estimates
(mean, median and mode) and the LGCP method the highest estimates, closely followed
by the Hom Po approach. The Hom Po approach and the GAM Po methods have the
lowest prediction uncertainty. Here, our LGCP method has an interquartile range ap-
proximately twice as large as the GAM NB approach, and three times larger than GAM
Po and Hom Po approaches. For all the spatial methods, the mean predictor is slightly
higher than the median predictor, indicating a small degree of skewness with a heavier
upper tail. This effect is most pronounced for the LGCP approach.

Table 3 shows the results from the validation scheme applied to the four methods we
compare here, as outlined in Section 4.4. At the photo level, we issue a prediction for the
pup count per photo, for either 10% of the photos or all photos in a single transect at
a time. Here, our LGCP method yields very good results, in particular for the random
10-fold cross-validation where observations are generally available in the neighborhood
of the prediction locations. It is significantly the best method for this setting under the
CRPS, defined as having non-overlapping 90% CI strictly below all others, and almost
significant in terms of the logScore. When leaving out a full transect at a time, our
LGCP method and GAM NB method perform very similar, and somewhat better than
the others.

At the aggregate/transect level we issue a joint prediction for the total pup count
per 10% of the photos or per transect, respectively. Here, the baseline homogeneous
Poisson model performs very well with the random leave-out scheme, indicating that the
data may be close to homogeneous across the photos. However, this does not transfer
to the second set-up where we leave out one transect at a time in which case our LGCP
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Fig. 6. The predictive distributions per transect for the LGCP and GAM NB methods plotted
against the true count for hooded seals. For each method, the solid line shows the median, the
light colored box shows the 50% CI, while the transparent box shows the 90% CI. The y-axis
has a log10(x+ 2)-scale to better show differences.

method and the GAM NB method again perform well. As seen in Figure 1, the data do
not appear homogeneous across the transects. Note that these reported scores are aver-
ages over relatively few predictions, only 10 distinct predictions for the random 10-fold
cross-validation study and 27 distinct predictions for the leave-out-transect setup. The
score values are thus associated with a large degree of uncertainty. The uncertainty is
particularly high for the homogeneous Poisson model that, due to the assumption of ho-
mogeneity, is especially sensitive to inhomogeneities across the different cross-validation
sets.

Based on the results in Table 3, our LGCP method performs somewhat similar to the
GAM NB method and these are both clearly superior to the other two alternatives; the
two methods can only be distinguished in terms of CRPS on the photo level. Despite
this, their resulting posterior predictive distributions are quite different. To get further
insight into this phenomenon, Figure 6 shows the posterior predictive distributions for
the two methods per transect in the leave-out-transect setup, plotted against the true
transect counts. As seen from the figure, the GAM NB method seems to have too narrow
credibility intervals, while the LGCP approach appears more calibrated. In fact, the 90%
CI covers the true count in 26/27 ≈ 96% of the transects for the LGCP approach, and
only 18/27 ≈ 67% of the transects for the GAM NB approach. The 50% CI is covered
in respectively 16/27 ≈ 59% and 11/27 ≈ 41% of the transects for the LGCP and
GAM NB approaches. Note that when looking at the MAE (mean absolute error) of
the median count estimate for the two methods, the GAM NB method achieves MAE of
12.4, while the LGCP method is slightly worse with MAE of 13.8. Thus, the GAM NB
method seems to do somewhat better as a point estimator, while the LGCP is better at
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Fig. 7. The mean and standard deviation of the random field Zf (s) in (1) fitted for harp seals
with our LGCP approach.

estimating the uncertainty.

5.2. Harp seals
A total of 6034 harp seal pups where observed on the 2792 photos from the aerial pho-
tographic survey. As illustrated by the red dots in Figure 1, there are much larger packs
of harp seal pups than hooded seal pups, indicating a higher degree of inhomogeneity.
Here, the pup count per photo ranges from 0 to 160.

Figure 7 shows the mean and standard deviation of the fitted random field Zf (s) using
our LGCP procedure. Compared to the latent field for the hooded seal pups in Figure 4,
the mean field here has a much higher degree of spatial variation with higher and steeper
peaks. However, the locations where the seal pups mainly appear are similar to those for
the hooded seal pups, except for some additional colonies in the north and north-west
of the region. Otherwise, the properties of the two fields are fairly similar. The range
of the latent field has a posterior mean of 2.89 km, a slightly smaller value than for the
hooded seals which corresponds to roughly half the distance between two transects. The
fitted model gives the following posterior means for intercept (α) and fixed effects (β):
meanα = −2.77,meanβ,q = 14.70,meanβ,s1,s2,s12 = (0.03, 0.01,−0.003). Note that the
covariate effects are stronger for the harps than the hooded seals. This is natural as there
are many more observed harps than hooded seals. The GAM NB approach gives the
following coefficient estimates: α̂ = 2.70, β̂q = 19.05, and β̂s1,s2,s12 = (0.02, 0.04,−0.1).

Figure 8 shows the posterior predictive distribution for the total number of harp seal
pups in the whelping region using our LGCP procedure, along with the corresponding
results for the two GAM procedures (GAM NB and GAM Po) and the homogeneous
Poisson model (Hom Po). A simple summary of Kingsley’s method is also given for
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Fig. 8. The predictive distributions for the total harp pup counts in the whelping region for the five
different approaches. The x-axis is plotted on log-scale. For Kingsley’s method, we show the
point estimate +/- 2 times the estimated standard deviation, corresponding to an approximate
95% confidence interval under a normal distribution assumption.

Table 4. Summary table for the predictive distributions for the total number of harp
seal pups in the whelping region.

mean median mode IQR 0.025-quantile 0.975-quantile
LGCP 147919 127965 110996 72347 69267 357185
GAM NB 98617 98035 91876 12895 81023 119349
GAM Po 84852 84852 84910 1536 82681 87094
Hom Po 88272 88267 88257 1583 85986 90587
Kingsley 85968 85968 85968 15926 62829 109107

reference. Table 4 summarizes these distributions. The LGCP prediction of the total
harp seal pup count is highly uncertain, essentially saying that the total number of seal
pups could very well be above 250 000, but also less than 100 000. In contrast, the
GAM NB method’s upper tail ends at about 130 000 seal pups, while the GAM Po
and Hom Po methods agree that there are between 80 000 and 90 000 harp seal pups
within the whelping region. Kingsley’s method yields point estimates similar to GAM
Po and Hom Po while its uncertainty (IQR) is tenfold greater, or similar to that for
GAM NB. Thus, there are significant differences both between the centrality and width
of the different methods’ posterior predictive distributions. The predictive distributions
for GAM Po and Hom Po are essentially symmetric while the one for GAM NB is
minimally skewed with a heavier upper tail. The LGCP approach, however, yields a
severely skewed predictive distribution with a predictive mean that is 15% larger than
the predictive median due to the large uncertainty in the estimation of the random field
Zf , cf. Figure 7.

To further investigate the differences between the four spatial predictions, we have
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Fig. 9. The estimated predicted median intensity field (plotted on a logarithmic scale) for all four
spatial methods fitted for harp seals.

plotted the predictive median intensity fields for the four methods in Figure 9, cf. the
expressions for the intensity fields in the third column in Table 1. The regression coeffi-
cient for the ice density covariate q shown in Figure 2 is somewhat higher for the GAM
approaches than for the LGCP approach (posterior mean of 19.05 for GAM NB com-
pared to 14.70 for LGCP), resulting in fairly smooth median intensity fields that reflect
the spatial structure of the ice density field. The median LGCP intensity field, however,
has stronger inhomogeneities across space and appears more strongly influenced by the
data density shown in Figure 1 with noticeable peaks in locations with higher observed
seal pup density. Overall, however, the median intensity is higher for the GAM methods
than for the LGCP. The reason that LGCP still produces higher predictions (cf. Table
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Fig. 10. The posterior predictive distributions per transect for the LGCP and GAM NB methods
plotted against the true count for harp seal pups. For each method, the solid line shows the
median, the light colored box shows the 50% CI, while the transparent box shows the 90% CI.
The y-axis takes a log10(x+ 2)-scale to better show differences.

4) is partly due to the high peaks, but mainly due to the high degree of uncertainty.
The posterior of Z(s) is more or less symmetric with a high degree of uncertainty, such
that large values are sampled quite frequently. These large values boosts the intensity
λ(s) = exp(Z(s)) considerably, resulting in large predictions. The lower uncertainty of
the GAM methods does not have the same effect. Further, note that although the two
GAM models have very similar posterior median intensities, their posterior predictive
distributions are quite different, cf. Figure 8 and Table 4.

As for the hooded seals, we take a closer look at the LGCP and GAM NB methods
to better understand how well their different estimates of the prediction uncertainty
match the actual uncertainty, see Figure 10. As expected, the GAM NB method has
a much narrower credibility intervals which too often fail to cover the true seal pup
count in the transect, while our LGCP method shows much better calibration. Out of
the 27 transects, the 90% credibility intervals for the LGCP and GAM NB approaches
covers the true count in respectively 24/27 ≈ 89% and 18/27 ≈ 67% of the transects.
The corresponding coverage for the 50% interval are 14/27 ≈ 52% and 11/27 ≈ 41%,
respectively. Thus, it is clear that the GAM NB method is underdispersive, while our
procedure seems well calibrated. On the other hand, as for the hooded seals, the posterior
median of the GAM NB method does better as a point estimator in terms of MAE (130.2)
than our LGCP method (179.1).

Table 5 shows the results from the validation procedure for the harp seals, yielding
similar model rankings as for the hooded seals. On photo level, the LGCP approach
gives a significantly better CRPS and logScore under random 10-fold cross-validation.
Leaving out full transects gives no significantly best method although the GAM Po
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Table 5. Validation results on photo level (one prediction per photo) and transect level (one prediction per
transect), respectively. Lower and upper bounds of 90% bootstrapped confidence intervals for the scores
are shown in parenthesis. Cells shown in italics are the best (smallest) per column. Those which are
significantly smaller than the others (defined as having non-overlapping confidence intervals) are also in
bold.

HARP SEALS: PHOTO LEVEL
Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
LGCP 1.14 (1.01, 1.27) 0.95 (0.91, 1.00) 1.96 (1.72, 2.20) 1.28 (1.22, 1.33)
GAM NB 1.78 (1.58, 2.00) 1.17 (1.11, 1.22) 1.90 (1.67, 2.13) 1.27 (1.21, 1.33)
GAM Po 2.32 (2.10, 2.55) 2.09 (2.00, 2.17) 2.46 (2.22, 2.71) 2.17 (2.08, 2.26)
Hom Po 2.64 (2.40, 2.90) 3.47 (3.28, 3.67) 2.66 (2.42, 2.92) 3.49 (3.30, 3.69)

HARP SEALS: AGGREGATE/TRANSECT LEVEL
Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
LGCP 95.98 (51.20, 148.78) 6.57 (5.93, 7.33) 152.95 (111.93, 198.59) 6.49 (5.98, 6.94)
GAM NB 88.33 (70.94, 106.87) 6.45 (6.31, 6.62) 96.70 (61.05, 139.91) 7.00 (6.24, 7.76)
GAM Po 60.93 (42.57, 79.87) 8.03 (6.83, 9.22) 55.96 (39.62, 74.51) 8.42 (7.34, 9.39)
Hom Po 102.62 (8.87, 296.09) 62.92 (4.31, 300.60) 149.38 (7.70, 454.53) 82.63 (4.08, 251.00)

method tends to generally do well here. However, as before, these average scores are
associated with a very high degree of uncertainty so that a ranking of the methods based
on these results is not advisable.

6. Conclusions and discussion

We have presented a point process based approach to estimate seal pup production
based on observational data from an aerial photographic survey. Using the SPDE-INLA
framework, we fit a Bayesian hierarchical model with Poisson counts following a log-
Gaussian Cox process (LGCP) model formulation. As an additional contribution to seal
pup production estimation, we adopt the use of satellite imagery as covariates in the
modeling process, to act as a proxy for ice thickness. The approach is applied to 2012
survey data from the Greenland Sea, with both harp and hooded seal pup counts, and
compared to several reference methods that can be associated with non-homogeneous
or homogeneous point process formulations rather than the doubly stochastic setting of
the Cox process.

The competing methods are compared in two cross-validation studies. The proposed
LGCP approach generally performs best locally, while no method stands out as the
best on a more regional scale. However, this lack of discrimination in the comparison
at the regional scale is not surprising given the relatively small size of our data set
resulting in large uncertainties in the scores, see e.g. the discussion and examples in
Thorarinsdottir and Schuhen (2018). The most distinguishing characters of the LGCP
method are higher count predictions and a large prediction uncertainty compared to
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the other methods. Our analysis suggests that the wide uncertainty bounds are indeed
necessary to issue calibrated predictions. This further suggests that the amount of data
collected in the aerial photographic survey might not be sufficient to obtain reliable
estimates of the total seal pup production in the whelping region.

The results show that the model uncertainty directly affects the seal pup count pre-
dictions to a large degree. This exemplifies the importance of a proper modeling of all
involved uncertainties. In particular, a comparison of the two GAM approaches for the
harp seals shows that even if the posterior median intensity fields for the two approaches
are very similar, the resulting posterior predictive distributions for the total seal pup
counts are quite different. This indicates that it is not sufficient to consider the mean
behavior. Salberg et al. (2009) found that a negative binomial likelihood was necessary
in order to obtain a good fit to the data. However, the conclusions of our analysis indi-
cate that a more careful and comprehensive assessment of both the model uncertainty
and the spatial inhomogeneities may warrant the use of the simpler Poisson likelihood,
in particular if the doubly stochastic framework of the LGCP is applied.

A direct comparison of the models based on a non-homogeneous versus a doubly
stochastic point process formulation is somewhat complicated by the fact that both the
models and the estimation approaches differ, and it is thus not possible to separate the
effect of the model from the effect of the inference method. In particular, the SPDE-INLA
approach is an approximate fully Bayesian approach with priors on all parameters, while
the GAM approach uses MPLE and a Bayesian assessment of uncertainty. In particular,
we do not include smoothing parameter uncertainty in the GAM approach as we aimed
to replicate the implementation of Salberg et al. (2009) for the comparison. While the
general GAM methodology has been extended to allow for fully Bayesian inference, see
e.g. Wood (2016), such an extension has not yet been implemented in the R package
mgcv for the negative binomial likelihood. Alternatively, Umlauf et al. (2018) propose a
full Bayesian analysis of GAMs with associated software available in the recent R package
bamlss.

Notably, the predictive distributions for the total seal pup counts are very similar
under the homogeneous Poisson model estimated with a fully Bayesian approach and
under the non-homogeneous Poisson model estimated with a MPLE/Bayesian uncer-
tainty approach. This invites the conclusion that the vast difference between these two
predictive distributions and that under the doubly stochastic Poisson model is, to a large
degree, due to the inclusion of the random effect in the intensity function of the doubly
stochastic model rather than choice of inference approach.

For the LGCP inference, we have applied the SPDE-INLA approach directly as im-
plemented in the R package INLA (Lindgren et al., 2011; Rue et al., 2009). Alternatively,
the more recent package inlabru (Bachl et al., 2019) is based on the SPDE-INLA soft-
ware to model point pattern data from surveys with varying detection probabilities over
the sampled area. Our setting is slightly different, in that the detection probability is
assumed to be equal to one over the entire sampled area and we only have sampled
counts per each photo rather than the precise locations of the seal pups. While this
somewhat simpler setting can also be analyzed with inlabru, we have chosen to im-
plement out own version which allows for a slightly higher flexibility in the generation
of the mesh. Besides small differences in the manner in which edge effects are treated
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when approximating the integral over the latent field, our implementation should give
comparable results to inlabru.

In our model specification, we only consider linear effects of the satellite covariate
and linear spatial effects. We investigated including non-linear effects and squared terms
both for the LGCP and the deterministic intensity model formulations. However, as this
did not improve the performance of the models, such terms were not included in the final
model specifications.

In the present work, harp and hooded seals have been modeled separately, based on
a single survey. As an alternative, one may consider building a joint model for harp and
hooded seals, for instance by using a common spatial field, in addition to seal specific
ones (see e.g. Waagepetersen et al. (2016)). Further, due to drifting ice and moving
seals, the spatial locations of the seal pups cannot be directly compared from one survey
to the next. However, most of the seals tend to stay in more or less the same packs
from one year to another. Such information could potentially be utilized to construct
informative priors, which may reduce the modeling uncertainty. It would be interesting
to see investigations on such attempts at borrow strength, either from previous surveys
or between seal types. Such investigations are, however, out of scope of the present
paper.

The analysis in this paper has been carried out in the R programming language (R
Core Team, 2019). Code and data associated with the paper are available through the fol-
lowing Github repository: github.com/PointProcess/SealPupProduction-JRSSC-code.
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