
Lifetime Data Analysis manuscript No.
(will be inserted by the editor)

What price semiparametric Cox regression?

Received: date / Accepted: date

Abstract Cox’s proportional hazards regression model is the standard method for modelling censored
life-time data with covariates. In its standard form, this method relies on a semiparametric proportional
hazards structure, leaving the baseline unspecified. Naturally, specifying a parametric model also for
the baseline hazard, leading to fully parametric Cox models, will be more efficient when the parametric
model is correct, or close to correct. The aim of this paper is two-fold. (a) We compare parametric
and semiparametric models in terms of their asymptotic relative efficiencies when estimating different
quantities. We find that for some quantities the gain of restriting the model space is substantial, while it is
negligible for others. (b) To deal with such selection in practice we develop certain focused and averaged
focused information criteria (FIC and AFIC). These aim at selecting the most appropriate proportional
hazards models for given purposes. Our methodology applies also to the simpler case without covariates,
when comparing Kaplan–Meier and Nelson–Aalen estimators to parametric counterparts. Applications
to real data are also provided, along with analyses of theoretical behavioural aspects of our methods.

Keywords Cox regression · focused information criteria · model selection · parametrics and semipara-
metrics · survival data

1 Introduction and summary

For each individual i = 1, . . . , n with a q-dimensional covariate vector Xi = x, the semiparametric Cox
model (Cox, 1972) postulates a hazard rate function of the form

α(s) exp(xtβ), (1)

with the baseline hazard α(·) left unspecified, and β = (β1, . . . , βq)
t the vector of regression coefficients.

Maximising a partial likelihood leads to the Cox estimator β̂cox, accompanied when necessary by the
Breslow estimator Âcox(·) for the cumulative baseline hazard function A(t) =

∫ t
0
α(s) ds (Breslow, 1972).

Easily interpretable output from standard software then yields inference statements pertaining to the
influence of the specific covariates, survival curves for individuals with given covariates, etc.; see e.g. Aalen
et al. (2008) for clear accounts of the relevant methodology and for numerous illustrations.

The semiparametric Cox regression method is a statistical success story, scoring high regarding ease,
convenience, and communicability. This risks making statisticians unnecessarily lazy, however, when it
comes to modelling the α(·) part of the model. When the underlying hazard curve is inside or close to some
parametric class, say αpm(s; θ), then relying on the semiparametric machinery may lead to a loss in terms
of precision of estimates and predictions. There is also a potential price to pay in terms of understanding
less well the biostatistical or demographic phenomena under study. Thus we advocate attempting fully
parametric versions of (1), with analysis proceeding via fully parametric likelihood methods for θ and
β jointly. For instance, exponentially and Weibull distributed survival times correspond to, respectively,
constant (αexp(s; θ) = θ) and monotone (αwei(s; θ) = θ2(θ1s)

θ2−1θ1) parametric hazards.
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The title of our paper is notably reminiscent of the corresponding question ‘what price Kaplan–
Meier?’, which is the title of Miller (1983). In the simpler case without covariates, Miller examined

efficiency loss when using the nonparametric Kaplan–Meier Ŝkm(t) compared to a maximum likelihood

(ML) based parametric alternative Spm(t; θ̂) = exp{−Apm(t; θ̂)}, when the latter is true. Here Apm(t; θ) =∫ t
0
αpm(s; θ) ds is the cumulative hazard rate under the parametric model. Miller found that these losses

might be sizeable, especially for very low and high t. Miller’s results were discussed and partly countered
in the paper ‘the price of Kaplan–Meier’ (Meier et al., 2004), where the authors in particular argue that
the results need not be as convincing for estimation of other quantities, or under model misspecification.

These studies motivate the current paper aiming at providing machinery for answering

(a) the more general ‘what price semiparametric Cox regression?’ question, in terms of loss of efficiency
when estimating different quantities when a certain parametric model holds; but also

(b) the inevitable follow-up question; how we can meaningfully choose between the semiparametric and
given parametric alternatives in practical situations.

Since the precise answers to the covariate-free analogue of (a) depend on the quantity under study,
it is natural to answer these questions in terms of so-called focus parameters. A focus parameter µ is
a population quantity having special importance and relevance for the analysis. Examples include the
survival probability at a certain point, the increase in cumulative hazard between two time points, a life
time quantile, the expected time spent in a restricted time interval (all possibly conditioned on certain
covariate values), and the hazard rate ratio between two individuals associated with different covariates.

We shall restrict ourselves to focus parameters which may be written as µ = T (A(·), β) for some
smooth functional T , i.e. to functionals of the cumulative baseline hazard A(·) and the regression co-
efficients β, in addition to one or more covariate values x (omitted in the notation). This covers al-

most all natural choices, including those mentioned above. For Âcox(·), β̂cox and Âpm(·), β̂pm being the
semiparametric and fully ML-based parametric estimators of respectively A(·) and β, these focus pa-

rameters may be estimated either semiparametrically, by µ̂cox = T (Âcox(·), β̂cox), or parametrically, by

µ̂pm = T (Apm(·; θ̂), β̂pm).
Under certain regularity conditions, we shall later see that the two types of estimators fulfill

√
n(µ̂cox − µtrue)

d→ N(0, vcox) and
√
n(µ̂pm − µ0)

d→ N(0, vpm) as n→∞, (2)

where vcox and vpm are limiting variances explicitly specified later. The µtrue is the true unknown value
of µ, and µ0 is the so-called least false value of the focus parameter for the particular parametric class.
When obtaining answers to (a) above, we work under the traditional efficiency comparison framework
also used by Miller (1983) assuming that the parametric model is correct and µ0 = µtrue. To measure the
efficiency loss by relying on the semiparametric model when estimating µ, we use the asymptotic relative
efficiency ARE = vpm/vcox. It is well known that generally ARE ≤ 1, corresponding to the parametric
model being more efficient. The scientifically interesting question here is rather in which situations the
ARE is extremely low, and when it is so close to 1 that one should not risk restricting oneself to the
parametric form. On the other hand, when the true model is not within that particular parametric class,
µ0 is typically different from µtrue, reflecting a nonzero bias b = µ0−µtrue. In any case, (2) motivates the
following approximations to the mean squared error for the estimators of µ: msenp = 02 + n−1vcox and
msepm = b2 + n−1vpm, which we utilise to present efficiency comparisons also outside model conditions.

There is a certain intention overlap of our take on question (a) with work by Efron (1977) and Oakes

(1977). The former paper related to the efficiency of β̂cox, examined for certain classes of parametric
families, and involves parametric and semiparametric information calculus. Efron also identified conditions
giving full efficiency. The latter paper developed methods for estimating lack of efficiency for certain
models, via functions of Hessian matrices. For further results along these lines, also with finite-sample
efficiency discussion, see Kalbfleisch and Prentice (2002, pp. 181–187). Yet further results along similar
lines are provided in Jeong and Oakes (2003, 2005), with attention also to survival curve estimators.
Some of our results are more general than in these papers, however, in that efficiency results are achieved
also outside model conditions. Crucially, we also work with question (b), which we discuss now.

For the model selection task in (b) we develop focused and average focused information criteria
(FIC and AFIC). The FIC concept involves estimating mses for a pre-chosen focus parameter µ. As the
form of msepm is specified for a general parametric model, one may compare several parametric models
simultaneously with the semiparametric alternative, and rank all of them according to their estimation
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performance for that particular focus parameter. The FIC is a flexible model selection approach, where
one does not need to decide on an overall best model to be used for all of a study’s estimation and
prediction tasks, but merely one tuned specifically for estimating µ. Thus, this allows different models
to be selected for estimating different focus parameters. The AFIC concept generalises that of the FIC,
aiming at selecting the optimal model for a full set of focus parameters, possibly given different weights
to reflect their relative importance.

Note also that we cannot turn to the more traditional model selection criteria here, such as the
Akaike (AIC), the Bayesian (BIC) or the deviance (DIC) criteria, as these involve comparing parametric
likelihoods, and there is no such for the semiparametric model in (1). Hjort and Claeskens (2006); Hjort
(2008) have developed FIC methodology for hazard models, but these are restricted solely to covariate
selection within a specific model (such as the semiparametric Cox model). That framework is based
on Claeskens and Hjort (2003), relying on a certain local misspecification framework, also requiring
the candidate models to be parametrically nested. Thus, the earlier work on focused model selection
is incompatible with selecting between the nonparametric and parametric alternatives for the baseline
hazard. The current model selection problem therefore requires development of new methodology which
deals with the aforementioned issues. We follow the principled procedure of Jullum and Hjort (2017)
which establishes and works out FIC and AFIC procedures for comparing nonparametric and parametric
candidate models in the i.i.d. case without censoring nor covariates. Their development does not rely on
a local misspecification framework, and also allows for selection among non-nested candidate models.

We start the main part of the paper setting the stage by presenting basic asymptotic results for
semiparametric and fully parametric estimators in Section 2, pointing also to the covariate free special
case. In Section 3 we work out answers to various variants of the ‘what price’ question in (a). In Section
4 we offer constructive FIC and AFIC apparatuses for answering question (b), i.e. when one should rely
on semiparametrics and when one should prefer parametrics in practice. Section 5 studies the asymptotic
behaviour for the suggested FIC and AFIC procedures under model conditions, in addition to a minor
simulation study. Section 6 contains applications of our FIC and AFIC procedures to a dataset related
to survival with oropharynx carcinoma. Various concluding remarks are offered in Section 7. Appendix
A gives technical formulae for consistent estimators of a list of necessary variances and covariances. The
supplementary material accompanying this paper (XX, 2018) contains proofs of a few technical results
presented in the paper, in addition to some lengthy algebraic derivations. R-scripts are available on request
from the authors.

2 Basic estimation theory for the two types of regression models

Consider survival data with covariates being realisations of random variables (Ti, Xi, Di) for individuals
i = 1, . . . , n observed over a time window [0, τ ]. Here Ti is the possibly censored time to an identified

event, Xi is a covariate vector, and Di is the indicator of Ti being equal to the uncensored life-time T
(0)
i .

To model these data we consider two types of models: The semiparametric Cox model which models the
hazard rate by α(s) exp(xtβ), and a general fully parametric version which uses αpm(s; θ) exp(xtβ).

When studying these two model types, counting processes and martingale theory play an important
role. Let Ni(·) and Yi(·) be respectively the counting process and at-risk indicator at individual level,
Ni(s) = 1{Ti≤s,Di=1} and Yi(s) = 1{Ti≥s}, where 1{·} denotes the indicator function. The individual risk

quantities are R
(0)
(i) (s;β) = Yi(s) exp(Xt

iβ), having first and second order derivatives with respect to β:

R
(1)
(i) (s;β) = Yi(s) exp(Xt

iβ)Xi and R
(2)
(i) (s;β) = Yi(s) exp(Xt

iβ)XiX
t
i . The corresponding total risks

R(k)
n (s;β) =

n∑
i=1

R
(k)
(i) (s;β) for k = 0, 1, 2,

will also be important in what follows.
Below we state the working conditions, which will be assumed throughout the paper. Note first of all

that we shall restrict our attention to the case where the Cox model actually is correct, that is, individual
i has hazard rate

αtrue(s |Xi) = αtrue(s) exp(Xt
iβtrue) for i = 1, . . . , n, (3)
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for a suitable q-dimensional coefficient vector βtrue, and a baseline hazard αtrue(·) which is positive on (0, τ)

and has at most a finite number of discontinuities. The αtrue also has cumulative Atrue(t) =
∫ t
0
αtrue(s) ds

which is finite on the observation window [0, τ ]. We shall also assume that independent censoring is in
force, allowing the censoring time to be random and covariate dependent, and implying that the counting
processes Ni(t) have intensity processes given by

∫ t
0
Yi(s)αtrue(s |Xi) ds for i = 1, . . . , n; see also Aalen

et al. (2008, Ch. 2.2.8). This has the consequence that the martingales Mi associated with the counting

process Ni take the form Mi(t) = Ni(t) −
∫ t
0
Yi(s)αtrue(s |Xi) ds for i = 1, . . . , n. For presentational

simplicity, we also assume there are no tied events.1 Although a part of this paper concerns the special
case where the parametric model is indeed correct, we shall not in general assume that αtrue(s) is equal
to αpm(s; θ) for some θ, as we shall also need results outside such model conditions. In assuming (3)
above, we do however concentrate on parametric misspecification of the baseline hazard αtrue, rather than
potential misspecification of the relative risk function exp(·) or the proportional hazards assumption (such
misspecification may also occur in practice, but is outside the current scope). In addition, we shall put up
conditions sufficient for ensuring limiting normality for both semiparametric and parametric estimators.
These refer to the divergence measure in (13) and the matrices Jcox, J , K given in (7), (14), (16) and
(17). The conditions are:

(A) There exists a neighbourhood B around βtrue and a function r(0)(s;β) with first and second order β
derivatives r(1)(s;β) and r(2)(s;β), where r(k), k = 0, 1, 2 is a continuous function of β ∈ B uniformly

in s ∈ [0, τ ] and bounded on B × [0, τ ], such that for k = 0, 1, 2, n−1R
(k)
n (s;β) converges uniformly

over β ∈ B and s ∈ [0, τ ] to r(k)(s;β) in probability. In addition r(0)(·;βtrue) is bounded away from
zero on [0, τ ]. The matrix Jcox defined in (7) is also positive definite.

(B) The triples (Ti, Xi, Di), i = 1, . . . , n are i.i.d., and the covariates stem from a distribution C with
bounded domain.

(C) The parametric models have unique minimisers (θ0, β0) of the divergence function in (13) which are
inner points in their parameter spaces; each αpm(s; θ) is positive on (0, τ), has at most a finite number
of discontinuities in s, and is three times differentiable with respect to θ in a neighbourhood N(θ0);

the cumulatives Apm(t; θ) =
∫ t
0
αpm(s; θ) ds are finite on the observation window [0, τ ] and three

times differentiable under the integral sign for all θ ∈ N(θ0); the third derivatives of logαpm(s; θ)
and Apm(s; θ) (with respect to θ) are bounded uniformly in θ ∈ N(θ0) for all s ∈ [0, τ ]. The J and
K in (14), (16) and (17) are finite and positive definite.

These conditions are to some extent similar to those used in Andersen et al. (1993, Ch. VII) (semi-
parametrics) and Hjort (1992, Section 6) (parametrics). Although condition (C) is slightly weakened,
exploring the proofs in Hjort (1992) shows that the parametric results still go through. We shall thus
re-use the results in the two references without proofs. Note however that the results stated there, and
the new ones we shall provide, also hold under weaker conditions, with more complicated proofs. The
i.i.d. assumption in (B) is only needed for deriving explicit expressions for some of the limiting quantities
related to the parametric models. Similar results, with even more abstract limiting quantities, may be
derived without this assumption. The bounded domain condition in (B) may typically be weakened to
a Lindeberg type of condition (Andersen et al., 1993, Condition VII.2.2). Further technicalities should
allow the covariates to be time-dependent as well. More technical conditions, generalising Borgan (1984,
Conditions A–D) may also replace some of the conditions in (C). Yet other weaker sufficient conditions
may be put up in style of Hjort and Pollard (1993, Sections 6 and 7A).

2.1 The semiparametric Cox model

The classic semiparametric version relies on Cox’s partial likelihood or the log-partial likelihood

`n,cox(β) =

n∑
i=1

∫ τ

0

{Xt
iβ − log(R(0)

n (s;β))} dNi(s), (4)

1 Slightly adjusted estimators not influencing the theory may typically be applied when there are tied events, see e.g. Aalen
et al. (2008, Ch. 3.1.3).
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while leaving α() unspecified. The maximiser of `n,cox is the Cox estimator β̂cox. When the analysis
requires more than solely β, the Breslow estimator (Breslow, 1972)

Âcox(t) =

∫ t

0

∑n
i=1 dNi(s)

R
(0)
n (s; β̂cox)

, (5)

is typically used to estimate the cumulative hazard function Atrue(t) =
∫ t
0
αtrue(s) ds.

Under our working conditions, Andersen et al. (1993, Ch. VII) establishes asymptotic distribution

results for (Âcox(·), β̂cox). The first key result is that

√
n(β̂cox − βtrue)

d→ J−1coxUcox ∼ Nq(0, J
−1
cox), (6)

for a certain variable Ucox ∼ Nq(0, Jcox) and Jcox the q × q-dimensional matrix

Jcox =

∫ τ

0

{
r(2)(s;βtrue)

r(0)(s;βtrue)
− E(s;βtrue)E(s;βtrue)

t

}
r(0)(s;βtrue)αtrue(s) ds, (7)

where E(s;β) = r(1)(s;β)/r(0)(s;β). The second result may be formulated as

√
n{Âcox(·)−Atrue(·)}

d→W (·)− F (·)tJ−1coxUcox, (8)

where W (·) = W0(σ2(·)) for W0 a standard Wiener process independent of Ucox; and,

σ2(t) =

∫ t

0

αtrue(s)

r(0)(s;βtrue)
ds, F (t) =

∫ t

0

E(s;βtrue)αtrue(s) ds. (9)

The two limit results (6) and (8) settle the limit behaviour, not only for the covariates and the
cumulative baseline hazard, but for most quantities that may be estimated from these data. Recall the
focus parameter µ = T (A(·), β), with true value µtrue = T (Atrue(·), βtrue) and semiparametric estimator

µ̂cox = T (Âcox(·), β̂cox). Under a mild additional condition on T (being precisely stated in Section 4) we
have that for some appropriate finite variance vcox

√
n(µ̂cox − µtrue)

d→ N(0, vcox). (10)

2.2 Parametric Cox regression models

The alternative parametric Cox regression models take the hazard rate to be of the generic form

αpm(s; θ, β |Xi) = αpm(s; θ) exp(Xt
iβ) for i = 1, . . . , n,

with αpm(s; θ) a suitable baseline hazard function with cumulative Apm(s; θ), involving a p-dimensional
parameter θ. For notational convenience we shall, where appropriate, write γ for the pair θ, β, or more
precisely γt = (θt, βt) for the full p + q-dimensional parameter vector. Inference here is based on the
log-likelihood function2

`n(γ) =

n∑
i=1

∫ τ

0

[
{logαpm(s; θ) +Xt

iβ} dNi(s)− Yi(s)αpm(s; γ |Xi) ds
]
. (11)

Let γ̂t = (θ̂t, β̂t
pm) be the maximum likelihood estimator which maximises (11), also being the zero of

Un(γ) = n−1∂`n(γ)/∂γ = n−1
∑n
i=1 Ui(γ) where

Ui(γ) =

∫ τ

0

(
ψ(s; θ)
Xi

)
{dNi(s)− Yi(s)αpm(s; γ |Xi) ds} =

∫ τ

0

(
ψ(s; θ)
Xi

)
{Yi(s)q(s; γ |Xi) ds+ dMi(s)} ,

(12)

with q(s; γ |x) = αtrue(s |x)− αpm(s; γ |x) and ψ(s; θ) = ∂ logαpm(s; θ)/∂θ.

2 If γ influences the censoring mechanism and covariate distribution, then (11) is only a ‘partial’ likelihood, and not a
true one. This has no consequences for inference, however.
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Working outside parametric model conditions, no true value of γ exists. There is rather a least false
parameter γt0 = (θt0, β

t
0) which is defined as the minimiser of the following divergence function:

d[{αtrue(·), βtrue}, {αpm(·; θ), β}] =

∫ ∫ τ

0

y(s |x)

[
αtrue(s |x) log

αtrue(s |x)

αpm(s; γ |x)
− q(s; γ |x)

]
dsdC(x),

(13)

where y(s |x) = E{Yi(s) |Xi = x} = Pr(Ti ≥ s|Xi = x). This specific divergence function takes the
same role as the Kullback–Leibler divergence does for standard uncensored ML estimation, see e.g. Hjort
(1992) for details. That is, from an outside-model-conditions perspective with random covariates, γ0 is
the unknown quantity which the maximum likelihood estimator γ̂ is aiming at. Hjort (1992) further
shows that γ̂ →p γ0 as n → ∞ and gives the asymptotic distribution of

√
n(γ̂ − γ0). Observe also that

E{Ui(γ0)} = 0(p+q)×1. Letting Ii(γ) = ∂Ui(γ)/∂γt, define

J =

(
J11 J12
J21 J22

)
= −E{Ii(γ0)} and K =

(
K11 K12

K21 K22

)
= Var{Ui(γ0)}, (14)

where the expectation and variance are taken with respect to both the survival distribution and the
covariate distribution C. Let us write

g(k)(s;β) = αtrue(s)r
(k)(s;βtrue + β)− αpm(s; θ0)r(k)(s;β0 + β), for k = 0, 1, 2, (15)

for the limit in probability of n−1
∑n
i=1R

(k)
(i) (s;β)q(s; γ0 |Xi). The blocks of J and K are then given by

J11 =

∫ τ

0

{ψ(s; θ0)ψ(s; θ0)tr(0)(s;β0)αpm(s; θ0)− ψd(s; θ0)g(0)(s; 0)}ds,

J12 = J t
21 =

∫ τ

0

ψ(s; θ0)r(1)(s;β0)tαpm(s; θ0) ds,

J22 =

∫ τ

0

r(2)(s;β0)αpm(s; θ0) ds,

(16)

K11 =

∫ τ

0

[ψ(s; θ0)ψ(s; θ0)tr(0)(s;βtrue)αtrue(s)

− {Ad
pm(s; θ0)ψ(s; θ0)t + ψ(s; θ0)Ad

pm(s; θ0)t}g(0)(s;β0)] ds,

K12 = Kt
21 =

∫ τ

0

[ψ(s; θ0)r(1)(s;βtrue)
tαtrue(s)− {Ad

pm(s; θ0) + ψ(s; θ0)Apm(s; θ0)}g(1)(s;β0)t] ds,

K22 =

∫ τ

0

[r(2)(s;βtrue)αtrue(s)− 2g(2)(s;β0)Apm(s; θ0)] ds,

(17)

where ψd(s; θ) = ∂ψ(s; θ)/∂θt and Ad
pm(s; θ) = ∂Apm(s; θ)/∂θ =

∫ s
0
ψ(u; θ)αpm(u; θ) du. The expressions

in (16) are reformulated from Hjort (1992), while those in (17) are derived in the supplementary material.
For U ∼ Np+q(0,K), the asymptotic distribution related to γ̂ is (by Hjort (1992, Theorem 6.1)) given by

√
n(γ̂ − γ0)

d→ J−1U ∼ Np+q(0, J
−1KJ−1). (18)

Analogous to (10) for the semiparametric Cox model, mild regularity conditions (again being spec-
ified in Section 4) allow extending (18) to parametric focus parameter estimators of the form µ̂pm =

T (Apm(·; θ̂), β̂pm) aiming at the least false parameter value µ0 = T (Apm(·; θ0), β0). For vpm the appropri-
ate parametric variance term, the generic limit result reads

√
n(µ̂pm − µ0)

d→ N(0, vpm). (19)
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2.3 The covariate free special case

Consider now the case where there are no covariate information (q = 0), and the hazard rate αtrue(s |x) =
αtrue(s) is common for all individuals. This is indeed a special case of the general regression model
formulation of (1). Hence, the asymptotic results stated above still hold. This is seen by observing that
the covariate free special case appears when defining ‘0/∞ = 0’ and letting the covariate distribution C
be degenerate at zero. The semiparametric case is now a nonparametric one, with Ucox degenerate at zero,

and R
(0)
n (s;β) =

∑n
i=1 Yi(s), such that the Breslow estimator in (5) reduces to the well-known Nelson–

Aalen estimator Ânaa(t) =
∫ t
0
{
∑n
i=1 dNi(s)}/{

∑n
i=1 Yi(s)}. Further, r(0)(s;β) = y(s) = Pr(Ti ≥ s), and

σ2(t) reduces to η2(t) =
∫ t
0
αtrue(s)/y(s) ds such that (8) reduces to

√
n{Ânaa(·)−Atrue(·)} →d W0(η2(·)).

For the parametrics, exclusion of the covariates implies that the log-likelihood in (11) with γ = θ
reduces to

∑n
i=1

∫ τ
0
{logαpm(s; θ) dNi(s) − Yi(s)αpm(s; θ) ds}, such that the divergence function in (13)

reduces to d(αtrue, αpm) =
∫ τ
0
y(s) [αtrue(s) log(αtrue(s)/αpm(s; θ))− {αtrue(s)− αpm(s; θ)}] ds. Since q =

0, the matrices J and K of (14) first reduces to respectively J11 and K11. Second, since r(0) and g(0) are

simplified, we get
√
n(θ̂ − θ0)→d Np(0, J

−1
0 K0J

−1
0 ), with J0 and K0 the two p× p-dimensional matrices

given by

J0 =

∫ τ

0

y(s)[ψ(s; θ0)ψ(s; θ0)tαpm(s; θ0)− ψd(s; θ0){αtrue(s)− αpm(s; θ0)}] ds,

K0 =

∫ τ

0

[ψ(s; θ0)ψ(s; θ0)ty(s)αtrue(s)

− {Ad
pm(s; θ0)ψ(s; θ0)t + ψ(s; θ0)Ad

pm(s; θ0)t}{αtrue(s)− αpm(s; θ0)}] ds.

As the Cox regression formulation in (1) covers both the case when covariates are present and not, we
shall from here on out use the terminology and notation of semiparametric Cox regression independently
of whether covariates are available or not.

3 What price?

The main reason for using the fully parametric options introduced above is that they lead to estimators
and inference methods sharper than those of the semiparametric nature commonly employed. Thus, one
may expect that for general focus parameters, the estimators based on parametric models have smaller
variances than those based on the semiparametric strategy, i.e. vpm < vcox.

Below we study the asymptotic relative efficiency

ARE =
vpm
vcox

of the parametric and semiparametric models estimating different types of focus parameters µ = T (A(·), β).
The smaller the ARE is, the more deficient is the semiparametric Cox model compared to the fully para-
metric option. It is not our intention to try to cover all of the possible µ, models or special cases one
could consider. Our aim is rather to exemplify that whether there is any point in considering a parametric
model really depends on what is estimated (i.e. the focus parameter µ) – and to pinpoint cases where
there is a lot and essentially nothing to lose. Thus, we shall restrict ourselves to the case where (1) holds
and the true baseline survival distribution and censoring distribution are exponentially distributed with
rates respectively λ and ρ. In the cases with covariates we shall assume that the covariates are univariate
and Uniform(0, 1) distributed. Although the true survival distribution is exponential, we shall compute
ARE both for the exponential and Weibull as the estimated parametric model. We consider the following
quantities: The cumulative hazard without covariates A(t); the cumulative hazard conditional on some
covariate x, A(t |x) = A(t) exp(xtβ); and the regression coefficient β. As a consequence of model condi-
tions and the delta method, any continuously differentiable function of an estimand has the same ARE
as the estimand itself. Therefore the survival probability S(t) = exp{−A(t)}, has the same ARE as the
cumulative hazard A(t). As noted in Remark S1 of the supplementary material (XX, 2018), the u-quantile
for which u = 1 − S(t) also has the that very same ARE. These equivalences also hold with covariates
present. The ARE of hazard ratios between individuals with different covariates also has equivalences
with ARE for β. Thus, our examples span quite broadly.
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Fig. 1 ARE curves for cumulative hazards, survival probabilities and quantiles without covariates. Black and red lines
correspond to, respectively, the exponential and Weibull models. Solid, dashed and dotted line type refer to censoring
proportions of respectively 0%, 20% and 40%. The dotted grey line shows the mode of the ARE for the exponential model.

Since simple, interpretable closed form expressions for the ARE are only available for the simplest
cases, we shall present the ARE by plots, typically relying on numerical integration. To restrict the time
domain to practically reasonable values, all ARE-plots except those for β, are presented as functions of

the (conditional) ‘death probability’ Pr(T
(0)
i ≤ t) (and Pr(T

(0)
i ≤ t |x)), rather than the time index itself.

Thus, we may without loss of generality set λ = 1 and scale ρ to match different censoring proportions
which we study.

3.1 What price Nelson–Aalen and Kaplan–Meier?

The ARE related to estimation of the cumulative hazard for the covariate free case, was considered already
by Miller (1983) when τ =∞. With notation as in Section 2.3 and with τ finite, we get that under these
model conditions the nonparametric limit variance (using either Nelson–Aalen or a transformation of
Kaplan–Meier) is

η2(t) =
λ[exp{(λ+ ρ)t} − 1]

λ+ ρ
.

The limit variance under the exponential model is moreoverAd
pm(t; θ0)tJ−10 Ad

pm(t; θ0), withAd
pm(t; θ0) = t,

and in full generality with θ0 = λ, we have

J0 = λ−1
∫ τ

0

exp{−(λ+ ρ)s}ds =
1− exp{−(λ+ ρ)τ}

λ(λ+ ρ)
.

Thus, the ARE of the cumulative hazard with the exponential model as reference becomes

AREexp =
exp{(λ+ ρ)t} − 1

{(λ+ ρ)t}2
[1− exp{−(λ+ ρ)τ}], (20)

which can be dramatically small, especially for small and large t. Note that when τ → ∞, the factor in
the brackets disappears, and leaves us with the less general formula given by Miller (1983) – which is
only precise for very large observations windows [0, τ ]. As noted also by Miller (1983), (20) has a global
maximum point which independently of λ and ρ reaches approximately 0.65 as τ →∞. Figure 1 presents
the ARE for the exponential and the Weibull model (the former via (20)), with a few different censoring
schemes as τ → ∞. As noted above these ARE results also hold for S(t) and the u-quantile for which
u = 1−S(t). As seen from the figure, the ARE is dramatically small for very small and large time points.
For the exponential model, the ARE is very small also for moderate t with little censoring. When t is
large, the ARE generally reduces when the censoring proportion increases, while it increases for small t.

3.2 What price semiparametric Cox regression? – Conditional cumulative hazard and survival
probability

The natural extension of the previous subsection is to ask what the ARE looks like when covariates are
available and are being conditioned upon, i.e. when comparing semiparametric and parametric options
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Fig. 2 ARE curves for conditional cumulative hazards, survival probabilities and quantiles for four situations described
by the panel headings. Black and red lines correspond to, respectively, the exponential and Weibull models. Solid, dashed
and dotted line type refer to censoring proportions of respectively 0%, 20% and 40%. The dotted grey line indicates (for
comparison) the mode of the ARE for the exponential model in the covariate free case.

of the form

Âcox(t | x) = Âcox(t) exp(xtβ̂cox) and Âpm(t |x) = Apm(t; θ̂) exp(xtβ̂pm). (21)

Under model conditions this amounts to comparing the semiparametric asymptotic variance of the
form

vcox = exp(2xtβtrue)[σ
2(t) + {F (t)−Atrue(t)x}tJ−1cox{F (t)−Atrue(t)x}], (22)

with parametric asymptotic variances of the general form

vpm = exp(2xtβtrue)

(
Ad

pm(t; θtrue)
Apm(t; θtrue)x

)t

J−1
(
Ad

pm(t; θtrue)
Apm(t; θtrue)x

)
. (23)

For this case, the ARE depends not only on t and the censoring proportion, but also on βtrue and the chosen
x. As noted above these ARE results also hold for S(t |x) and the u-quantile for which u = 1− S(t |x).

A snapshot of this situation with a scalar covariate is illustrated in Figure 2, where the ARE are
presented for the four combinations of x = 0.5, 0.8 and βtrue = 1, 2.5, all with three different censoring
proportions when τ → ∞. Similar results are found for negative β of the same magnitudes. With small
values of x, the ARE curves are similar to those presented for x = 0.8. Note in particular the curves in
the upper right panel, representing the efficiency when β is large and x is average valued (i.e. around 0.5):
The low mode of the exponential model (especially when there is no censoring) shows that there is quite
a lot to gain by relying on a constant baseline hazard for all time points – significantly more than what
was the case without covariates. As seen in the upper left panel, a smaller β results in a smaller gain. In
fact, when β reaches zero for this case of x = 0.5, the ARE curves are identical to those for the covariate
free case in Figure 1. On the other hand, as illustrated by the lower two panels, there is less to gain from
relying on parametric models when the covariate values are far from the average, and moderately large
time points are of interest.
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Fig. 3 ARE curves for β and hazard ratios. Black and red lines correspond to, respectively, the exponential and Weibull
models. Solid, dashed and dotted line type refer to censoring proportions of respectively 0%, 20% and 40%.

3.3 What price semiparametric Cox regression? – Regression coefficient and hazard ratios

In some regression situations, interest is solely in the regression coefficients β and hazard ratios exp(∆tβ)
for individuals whose covariates differ by some vector ∆. The latter here has the same ARE as ∆tβ.
Comparison of the semiparametric estimator β̂cox with fully parametric β̂pm amounts to comparing the
diagonal of J−1cox with the diagonal of [J−1]22 = J22 − J21J

−1
11 J12, where [J−1]22 denotes the q × q-

dimensional lower right block matrix of J−1. Figure 3 shows ARE curves as a function of βtrue when
q = 1 for the exponential and Weibull models, once again with three different censoring proportions as
τ →∞. The figure suggests that when β is close to zero, there is practically nothing to lose by using β̂cox
as opposed to β̂pm. If the effect of the covariate is very large (i.e. |β | is large), it is however significantly
more efficient to use a parametric option, especially when the amount of censoring is small.

Remark 1 One may suspect that the high ARE for β-estimation is caused by the simplicity of the
linear baseline hazard. The results are however practically identical under a Weibull model with shape
parameters both below and above 1. ARE curves not shown here for the ‘expected time lived in a
restricted time interval’

∫ t
0
S(s |x) ds, which is further discussed in Section 4.1, also turn out similar to

those in Figure 2. In the efficiency results above, we have only included a single covariate. When there are
several covariates present, the numerical procedures and algorithms required to compute the ARE grow
quickly in complexity and become rather unwieldy. Finite sample based simulation are then more suitable.
Rough results from some brief simulation tests (not shown here) are as follows: Increasing the number of
covariates drags the ARE towards 1 for both the exponential and the Weibull model for estimation of β,
i.e. the Cox model closes in even further on parametric models in terms of efficiency. This is also the case
when estimating conditional cumulative hazards, survival probabilities and quantiles, as this increases
the total effect of the covariates. When xtβtrue is held constant when increasing q, however, the ARE
decreases. These results seem to be independent of the correlation between the covariates.

3.4 Efficiency outside model conditions

The above illustrations showed what losses could be expected when using the semiparametric Cox model
when a simpler parametric model is indeed correct. In practical situations, a parametric model is seldom
100% correct, so using it typically incurs a nonzero bias. The question is then whether this bias is small
compared to the increase in variance induced by the asymptotically unbiased semiparametric Cox model.

In formalising this, the limit results in (10) and (19) motivate the following natural approximations
to the mean squared errors of µ̂cox and µ̂pm,

msecox = 02 + n−1vcox and msepm = b2 + n−1vpm, (24)

for a general focus parameter µ. Here b = µ0−µtrue is the asymptotic bias incurred by using the parametric
model. Since typically vpm < vcox also when the parametric model is incorrect, msepm can be expected to
be lower than msecox if the b is not too large for the particular focus parameter. Note however that when
increasing n, the squared bias term will eventually dominate, making msepm the largest unless b = 0.
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Fig. 4 Mse ratio curves for the exponential model vs. the semiparametric Cox model when estimating the conditional
cumulative hazard under the Weibull(λ = 1, d) model, i.e. Atrue(t |x) = td exp(xβtrue). Four combinations of the parameter
d and the sample size n are displayed, all with βtrue = 1 and x = 0.5. The line type refers to the censoring proportions: Solid
line = no censoring, dashed line = 20% censoring, dotted line = 40% censoring. The dashed horizontal grey line indicates
the point where the models are equally efficient.

Consider now the conditional cumulative hazard case in Section 3.2, but without assuming the para-
metric model is fully correct. In this case vcox takes the same form as in (22), while vpm generalises (23)
and takes the form

vpm = exp(2xtβ0)

(
Ad

pm(t; θ0)
Apm(t; θ0)x

)t

J−1KJ−1
(
Ad

pm(t; θ0)
Apm(t; θ0)x

)
.

The bias incurred by the incorrect parametric bias is b = A0(t |x)−Atrue(t |x), where

Atrue(t |x) = Atrue(t) exp(xtβtrue) and A0(t |x) = Apm(t; θ0) exp(xtβ0). (25)

To illustrate the behaviour of the Cox model as opposed to a misspecified parametric model, we shall
compare msecox with msepm when the exponential model is misspecified. We take the baseline survival
distribution to be Weibull distributed with scale parameter λ = 1 and shape parameter d 6= 1, i.e. hav-
ing hazard rate αwei(s;λ, d) = d(λs)d−1λ. The mse ratio msepm/msecox is the natural outside-model-
conditions version of the ARE. Figure 4 displays such ratios for four combinations of shape parameters
and sample sizes when estimating the conditional cumulative hazard. In all cases we take βtrue = 1 and
x = 0.5. Unlike the case under model conditions, nonlinear functions of the cumulative hazard, such
as survival probabilities, will have different efficiency results. As the plots show, even when moderately
misspecified, the exponential model estimator is sometimes more efficient than that of the semiparametric
Cox model. In particular this is the case for the smallest sample size at the time range boundaries and
with considerable censoring proportions. In fact, for d = 0.9 and n = 100, the exponential model is uni-
formly more efficient in this sense. As n increases, the squared bias part dictate msepm to a larger degree
and thereby increases the mse ratio. When the amount of censoring increases, the mse ratio decreases
for most of the data range as this in practice reduces the effective sample size. In particular, increasing
censoring significantly reduces the loss of using the exponential model when the semiparametric is more
efficient.
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4 Focused and averaged focused information criteria

In the previous section we studied ARE under model conditions, in addition to some approximate mean
squared error ratios, working also outside model conditions. We saw that there is sometimes quite a lot
to gain from relying on a parametric model, not only if it is fully correct, but the gain or loss depends
heavily on the exact quantity being estimated, i.e. the focus parameter. The ‘what price’ questions answer
important and intriguing theoretical questions and may to some extent also be exploited by practitioners.
However, their dependence on the true unknown distribution makes them unusable as model selectors to
choose among a set of different parametric models and the semiparametric Cox model in practice.

The ultimate goal of analysis is often to estimate some focus parameter µ. The results in the previous
section then motivate guiding practical model selection by estimating the mean squared error approxima-
tion in (24). We shall here construct a variant of the focused information criterion (FIC) (Claeskens and
Hjort, 2003; Jullum and Hjort, 2017), aiming precisely at estimating these mean squared errors based
on available data. The FIC selects the model/estimator with the smallest estimated mean squared error.
We shall also present a more general average focused information criterion (AFIC), which may deal with
situations where a single model ought to be chosen for estimating a full set of focus parameters.

4.1 Joint convergence

In order to estimate (24) we need estimates of both the variances and the square of the bias, b. While

the bias itself may be estimated by b̂ = µ̂pm − µ̂cox, its square, b̂2, will typically have mean close to

b2 + Var b̂ = b2 + Var µ̂pm + Var µ̂cox − 2 Cov(µ̂pm, µ̂cox). Thus, to correct for the overshooting quantity,
we need an estimate of the Cov(µ̂pm, µ̂cox). See more on this in Section 4.2. This covariance cannot be
estimated based on the limiting marginals of

√
n(µ̂cox − µtrue) and

√
n(µ̂pm − µ0) (as was heuristically

given in (10) and (19)), but requires an explicit form for their joint limiting distribution.

Before stating a theorem with the joint limiting distribution, we present some notation and a helpful
lemma. Let us write ‘block(B,C)’ for the block diagonal matrix with B and C in, respectively, the upper
left and lower right corner, and zeros elsewhere. Denote also the q× q-dimensional identity matrix by Iq.
Let also the covariances G = Cov(Ucox, U

t) and ν(s) = Cov(W (s), U t) for Ucox as in (6), U as in (18),
and W (s) as in (8) and (9), and recall that we write Ad

pm(s; θ) = ∂Apm(s; θ)/∂θ =
∫ s
0
ψ(u; θ)αpm(u; θ) du.

Lemma 1 Under the working conditions in Section 2, the limit results in (6), (8) and (18) hold jointly,
and in particular

√
n


Âcox(·)−Atrue(·)
β̂cox − βtrue

Apm(·; θ̂)−A0(·)
β̂pm − β0

 d→

 W (·)− F (·)tJ−1coxUcox

J−1coxUcox

block(Ad
pm(·; θ0)t, Iq)J−1U

 =

(
Zcox(·)
Zpm(·)

)
, (26)

which is a 2(1 + q)-dimensional zero-mean Gaussian process with covariance function

Σ(s, t) =

(
Σ11(s, t) Σ12(s, t)
Σ21(s, t) Σ22(s, t)

)
,

where the (1 + q)× (1 + q)-dimensional blocks Σij(s, t), i, j = 1, 2 are given by

Σ11(s, t) =

(
σ2(min(s, t)) + F (s)tJ−1coxF (t) −F (s)tJ−1cox

−J−1coxF (t) J−1cox

)
,

Σ12(s, t) = Σ21(t, s)t =

(
{ν(s)− F (s)tJ−1coxG}J−1block(Ad

pm(t; θ0), Iq)
J−1coxGJ

−1block(Ad
pm(t; θ0), Iq)

)
,

Σ22(s, t) = block(Ad
pm(s; θ0)t, Iq)J−1KJ−1block(Ad

pm(t; θ0), Iq).

(27)
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The proof of the lemma is given in the supplementary material (XX, 2018). Recall also the g(k)(u;β)
notation in (15). Under the conditions in the above lemma, G and ν(s) take the following explicit forms:

G =

(
0p×q
Jcox

)t

−
∫ τ

0

(
ψ(u; θ0){Atrue(u)g(1)(u;βtrue)

t − g(0)(u;βtrue)F (u)t}
Atrue(u)g(2)(u;βtrue)− g(1)(u;βtrue)F (u)t

)t

du, (28)

ν(s) =

(∫ s
0
ψ(u; θ0)αtrue(u) du

F (s)

)t

−
∫ τ

0

(
g(0)(u;βtrue)ψ(u; θ0)

g(1)(u;βtrue)

)t

σ2(min(s, u)) du. (29)

Derivations of these expressions are given in the supplementary material (XX, 2018).
The above lemma motivates a theorem specifying that the limit results in (10) and (19) hold jointly,

i.e. that
√
n(µ̂cox − µtrue) and

√
n(µ̂pm − µ0) has a joint limit distribution. To give a generic proof,

the general notion of Hadamard differentiability is central. For general normed spaces D and E, a map
T : DT 7→ E, defined on a subset DT ⊆ D that contains φ, is called Hadamard differentiable at φ if there
exists a continuous, linear map T ′φ : D 7→ E (called the derivative of T at φ) such that ‖{T (φ + tht) −
T (φ)}/t−T ′φ(h)‖E → 0 as t↘ 0 for every ht → h such that φ+tht is contained in DT .3 In our applications,
the norm ‖ · ‖E will be either the Euclidean norm ‖ · ‖, the uniform norm ‖f(·)‖E = supa ‖f(a)‖, or a
combination of these. Recall the functional form of the focus parameter µ = T (A(·), β), and denote (in
the Hadamard sense) the derivatives of T at (Atrue(·), βtrue) and (A0(·), β0) by respectively T ′cox and T ′pm.

Theorem 1 Assume that T is Hadamard differentiable with respect to the uniform norm at (Atrue(·), βtrue)
and (A0(·), β0), and that the conditions of Lemma 1 hold. Then, as n→∞

√
n

(
µ̂cox − µtrue

µ̂pm − µ0

)
d→
(

Λcox

Λpm

)
=

(
T ′cox(Zcox)
T ′pm(Zpm)

)
∼ N2

((
0
0

)
,Σµ

)
, (30)

where vcox = Var (Λcox), vpm = Var (Λpm) and vc = Cov (Λcox,Λpm) in

Σµ =

(
vcox vc
vc vpm

)
. (31)

The proof of the theorem is given in the supplementary material (XX, 2018). The generality of the
above theorem, involving the functional derivative etc., has the possible downside that a fairly high level
of theoretical expertise is required to actually compute the resulting covariance matrix Σµ, which will
be needed in our upcoming FIC and AFIC formulae. Below we therefore provide simplified formulae for
the most natural classes of focus parameters. Some of the most common focus parameters depend on
A(·) only at a finite number of time points, in addition to β. Consider the functional µ = T (A(·), β) =
z(m1(A(t1), β), . . . ,mk(A(tk), β)), where t1, . . . , tk are k time points, m1, . . . ,mk are smooth functions
mj : R1+q 7→ R, and z is a function z : Rk 7→ R. Since T involves only a finite number of time
points, the ordinary delta method applies, and Σµ is established by a series of matrix products. Let m′cox
and m′pm be the k × (q + 1)-dimensional Jacobian matrices of m(a) = (m1(a1), . . . ,mk(ak))t evaluated
at respectively acox = {acox,j}j=1,...,k and apm = {apm,j}j=1,...,k, where acox,j = (Atrue(tj), βtrue) and
apm,j = (A(tj ; θ0), β0). Let similarly z′cox and z′pm be the 1 × k-dimensional Jacobian matrices of z
evaluated at respectively mcox = m(acox) and mpm = m(apm). Then

T ′cox(Zcox) = z′coxm
′
cox

Zcox(t1)
...

Zcox(tk)

 , and T ′pm(Zpm) = z′pmm
′
pm

Zcox(t1)
...

Zcox(tk)

 ,

such that Σµ of (31) is specified by vcox = z′coxm
′
coxΣ∗11{z′coxm′cox}t, in addition to

vc = z′coxm
′
coxΣ∗12{z′pmm′pm}t and vpm = z′pmm

′
pmΣ∗22{z′pmm′pm}t (32)

where each block Σ∗lo have elements {Σlo(ti, tj)}i,j=1,...,k, l, o = 1, 2 as described in (27). This indeed
covers simple conditional cumulative hazards via m(A(t), β) = A(t |x) = A(t) exp(xtβ) and condi-
tional survival probabilities m(A(t), β) = S(t |x) = exp{−A(t|x)}, but also, say, the difference between

3 We have avoided introducing the notation of Hadamard differentiability tangentially to a subset of D, as such are better
stated explicitly in our concrete cases.
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the probabilities of observing an event in the interval (t1, t2) for two different covariate values xa, xb:
{S(t1 |xa)− S(t2 |xa)} − {S(t1 |xb)− S(t2 |xb)}.

Explicit expressions for the Σµ associated with focus parameters dependent on the complete cumula-
tive baseline hazard function A(·) are more involved and perhaps easiest handled on a case by case basis.
Such derivations for the life time quantile can be found in the supplementart material (XX, 2018). Here
we shall consider the expected time lived in a restricted time interval [0, t] for an individual with covari-

ate values corresponding to some x, given by µ = ξt,x = T (A(·), β; t, x) =
∫ t
0

exp{−A(s) exp(xtβ)} ds =∫ t
0
S(s |x) ds. With Ŝcox(t |x) = exp{−Âcox(t |x)} and Ŝpm(t |x) = exp{−Âpm(t |x)}, this focus parame-

ter has semiparametric and fully parametric estimators given by respectively µ̂cox =
∫ t
0
Ŝcox(s |x) ds and

µ̂pm =
∫ t
0
Ŝpm(s |x) ds, consistent for respectively µtrue =

∫ t
0
Strue(s |x) ds and µ0 =

∫ t
0
S0(s |x) ds where

Strue(s |x) = exp{−Atrue(s |x)} and S0(s |x) = exp{−A0(s |x)}, having exponents as defined in (25).
Application of the functional delta method (van der Vaart, 2000, Theorem 20.8) gives

√
n

(
Âcox(· |x)−Atrue(· |x)

Âpm(· |x)−A0(· |x)

)
d→
(
ZA,cox(·)
ZA,pm(·)

)
=

(
ζcox(·)tZcox(·)
ζpm(·)tZpm(·)

)
, (33)

with Âcox(· |x), Âpm(· |x) and Atrue(· |x), A0(· |x) as defined in (21) and (25), and with slight abuse of
notation (omitting the x index), ζcox(·) = (exp(xtβtrue), Atrue(·) exp(xtβtrue)x

t)t and
ζpm(·) = (exp(xtβ0), Apm(·; θ0) exp(xtβ0)xt)t. In addition,

√
n

(
Ŝcox(· |x)− Strue(· |x)

Ŝpm(· |x)− S0(· |x)

)
d→
(
ZS,cox(·)
ZS,pm(·)

)
= −

(
Strue(· |x)ZA,cox(·)
S0(· |x)ZA,pm(·)

)
.

Omitting once again the notational dependence on x, let ξt,true =
∫ t
0
Strue(s |x) ds and ξt,0 =

∫ t
0
S0(s |x) ds,

and also Vt,cox(s) = ξt,true− ξs,true and Vt,pm(s) = ξt,0− ξs,0. By applying integration by substitution and
by parts, it follows that

√
n

(
µ̂cox − µtrue

µ̂pm − µ0

)
=

∫ t

0

√
n

(
Ŝcox(s |x)− Strue(s |x)

Ŝpm(s |x)− S0(s |x)

)
ds

d→ −

(∫ t
0
Strue(s |x)ZA,cox(s) ds∫ t
0
S0(s |x)ZA,pm(s) ds

)
=

(∫ t
0
ZA,cox(s) dVt,cox(s)∫ t

0
ZA,pm(s) dVt,pm(s)

)

= −

(∫ t
0
Vt,cox(s) dZA,cox(s)∫ t

0
Vt,pm(s) dZA,pm(s)

)
.

Thus, for this focus parameter, Σµ of (31) has elements vcox, vc and vpm given by

vcox =

∫ t

0

Vt,cox(s)2 d{ζcox(s)tΣ11(s, s)ζcox(s)}, vpm =

∫ t

0

Vt,pm(s)2 d{ζpm(s)tΣ22(s, s)ζpm(s)},

and vc =

∫ t

0

Vt,cox(s)Vt,pm(s) d{ζcox(s)tΣ12(s, s)ζpm(s)}.
(34)

4.2 The focused information criterion

With the limit theorem (Theorem 1) and applicable formulae for Σµ available, we turn to the actual
derivation of the FIC. As mentioned, this amounts to estimating msecox = n−1vcox and msepm = b2 +
n−1vpm, essentially requiring (consistent) estimates of the covariance matrix Σµ of (31) and the square of
the parametric bias b = µtrue−µ0, for the chosen focus parameter µ. Appendix A provides and discusses
estimators v̂cox, v̂c and v̂pm consistent for estimating vcox, vc and vpm for the above focus parameters.

With such estimators on board, the FIC score of the semiparametric Cox model is given by

FICcox = m̂secox = n−1v̂cox. (35)
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Estimating the variance part for the parametric case is similarly taken care of by inserting v̂pm for vpm.

Estimating the squared bias is however more troublesome. Consider the bias estimator b̂ = µ̂pm − µ̂cox.
From Theorem 1 it is immediate that

√
n(̂b− b) =

√
n(µ̂pm − µ0)−

√
n(µ̂cox − µtrue)

d→ Λpm − Λcox ∼ N(0, κ), (36)

where κ = vpm + vcox − 2vc, also implying consistency of b̂. From this limit it is seen that although b̂

is approximately unbiased for b, its square b̂2 has mean close to b2 + κ/n. It is therefore appropriate to

adjust the square of the bias estimate b̂2 by subtracting κ̂/n = (v̂pm + v̂cox − 2v̂c)/n. To avoid ending up
with unappealing negative squared bias estimates, an appropriate additional modification is to truncate
negative squared bias estimates to zero. We thus arrive at

FICpm = m̂sepm = max(̂b2 − κ̂/n, 0) + v̂pm/n. (37)

These are the FIC scores, which ranks the candidate models when being computed in practical situations.
Note that the parametric FIC score typically ought to be computed for several different parametric
options, with different estimates of squared bias and variance, resulting in a ranking of say four parametric
options, in addition to the nonparametric.

4.3 The average focused information criterion

The FIC apparatus arrived at above works for ranking candidate models when the ultimate goal of
analysis is to estimate a single given focus parameter µ. In some situations one may wish one’s model to
do well across a certain set of such focus parameters, like estimating all hazard rates across a certain time
window, or for a stratum of individuals defined by a subset of the covariate space. For such problems we
suggest the following average FIC strategy (AFIC).

Consider a collection or class of focus parameters µ(u), indexed by u, for which we contemplate using
either µ̂cox(u), or one of the fully parametric estimators µ̂pm(u). Assume that Theorem 1 is applicable for
each index u of the focus parameter µ(u), and that the loss of using µ̂(u) is

∫
{µ̂(u)−µtrue(u)}2 dω(u) for

a cumulative weight function or measure ω defined by the statistician to reflect the relative importance
of the focus parameters. This setup allows more importance to be assigned to estimating some µ(u) well
compared to others. The integral can also be a finite sum over a list of focus parameters. Expressions for
the risk, i.e. expected losses, or mean integrated squared errors, then follow from previous efforts:

misecox =

∫
n−1vcox(u) dω(u), and misepm =

∫
{b(u)2 + n−1vpm(u)}dω(u).

Here b(u) = µ0(u)−µtrue(u) may be estimated via b̂(u) = µ̂pm(u)−µ̂cox(u), for which
√
n{b̂(u)−b(u)} →d

N(0, κ(u)), with κ(u) = vcox(u) + vpm(u)− 2vc(u). In the final estimator for the integrated squared bias,
one may choose either to truncate before or after integration. We here choose the latter as we are no
longer seeking natural estimates for the individual mses, but for the new integrated risk function. This
gives the following AFIC formulae

AFICcox = 0 + n−1
∫
v̂cox(u) dω(u),

AFICpm = max
(

0,

∫
{b̂(u)2 − n−1κ̂(u)} dω(u)

)
+ n−1

∫
v̂pm(u) dω(u).

As for the FIC, these are then to be computed for the semiparametric Cox regression model and all the
different parametric candidates under consideration, to then rank them all from smallest to largest. The
model with the smallest AFIC score is selected and should be used for estimation of the whole set of
focus parameters.
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5 Performance of FIC and AFIC

5.1 Asymptotic behaviour and indirect goodness-of-fit testing

In terms of the ‘what price’ questions in Section 3, it is natural to ask how the FIC procedure selects
under model conditions. Consider however first the case when a parametric candidate model is incorrect
and has bias b 6= 0. From the structure of the FIC formulae in (35) and (37), and consistency of the
estimators involved, it is seen that as n grows, the squared bias term will dominate. The semiparametric
Cox model will therefore be the winning model with probability tending to 1 as n→∞. This may be seen
as an insurance against model misspecification when using the FIC – i.e. any parametric model returning
a biased estimator, will be selected with a probability tending to 0 as n→∞.

From (35) and (37) we see that a specific parametric model is selected over Cox whenever

max(̂b2 − κ̂/n, 0) + n−1v̂pm ≤ n−1v̂cox.

As long as v̂cox ≥ v̂pm (which typically is the case and happens with probability tending to 1 under model
condtions), then this is seen to be equivalent to the inequality

Zn = nb̂2/(v̂cox − v̂c) ≤ 2, (38)

It turns out that under model conditions vc = vpm. This follows since in that case J = K,G = (0q×p, Jcox)
and ν(s) = (Ad

pm(s; θ0)t, F (s)t), such that Σ12(s, t) = Σ22(s, t). In addition, the ‘cox’ and ‘pm’ quantities
in the vc- and vpm-formulae in (32) and (34)are all identical. Since v̂cox and v̂c are consistent, it further
follows under these model conditions that v̂cox − v̂c →p vcox − vc = vcox − vpm. The limit distribution

result of
√
n(̂b− b) in (36) then ensures that Zn →d χ

2
1, with χ2

1 a chi-squared distributed variable with
one degree of freedom. That is, the probability that the parametric model will be selected when it is
indeed true is Pr(Zn ≤ 2) → Pr(χ2

1 ≤ 2) ≈ 0.843. Thus, if exactly one of the parametric candidate
models possesses the property that b = 0 (and is correct), then that model and estimator will be selected
with a probability tending to 84.3%, while the semiparametric Cox model will be selected the remaining
15.7% of the times.

Note that for the AFIC, no such general limit result exists. The reason for this is that the AFIC
equivalent of (38) is Z∗n = n

∫
b̂(u)2dω(u) ≤ 2

∫
{v̂cox(u) − v̂c(u)}dω(u), which depends on the class of

focus parameters under consideration, and how they are weighted.
The AFIC is a model selection criterion aimed at estimating all focus parameters µ(u) well. It may,

however, also be viewed as an implied test of the hypothesis that a given parametric model is adequate,
in the form of the subhypothesis µ0(u) = µtrue(u) for each u. That subhypothesis is accepted, perhaps
translated to the statement that the parametric model is adequate for the purpose, provided AFICpm ≤
AFICcox. If once again v̂cox(u) ≥ v̂pm(u) for every u with increasing cumulative weight ω, or at least∫
v̂cox(u) dω(u) ≥

∫
v̂pm(u) dω(u), then the parametric model is accepted provided

n

∫
b̂(u)2 dω(u) ≤

∫
{v̂cox(u)− v̂pm(u) + κ̂(u)} dω(u) = 2

∫
{v̂cox(u)− v̂c(u)}dω(u).

An example could be µ(u) = A(u |x) for an interval of u which leads to a goodness-of-fit test of the form

n

∫
{Âpm(u |x)− Âcox(u |x)}2 dω(u) ≤ 2

∫
{v̂cox(u)− v̂c(u)}dω(u),

see also Hjort (1990). A more elaborate form could average also over different covariate values x. Notably,
as with the FIC, such a test comes as a byproduct of the AFIC apparatus, without the need to put up a
specific significance level like e.g. 0.05.

5.2 Summary of simulation experiments

To properly validate that the use of the FIC estimates works as intended in practical finite sample
situations, we have conducted a small simulation experiment. Using the same survival distribution as in
Section 3.4, with d = 1.15 and 20% censoring, we measure the performance of the FIC as MSE estimators
by comparing the average FIC scores in repeated samples with the empirical MSE of the resulting µ̂.
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We consider two focus parameters: µ1 = S(1 | 0.5) and µ2 = β, with sample sizes n = 100, 300, 600. As
both the accuracy and computational cost increases with n, we repeat the sampling 4.5 · 108/n2 times
(i.e. respectively 45000, 5000 and 1250 times), requiring similar computation time for all sample sizes.
Table 1 shows the results, indicating that on average the FIC estimates the intended quantities sufficiently
well. The variability of the individual FIC scores is indicated through their standard deviation specified
in the brackets. As expected, the variability decreases with the sample size, typically also relative to their
mean. Note that the truncation of negative squared bias, occurring only for some of the samples, leads
to a somewhat misleading increase in the standard deviation and thereby the reported variability of the
FIC scores. Taking also sensitivity to the precise study setup into account, the results and associated
variability measures should be read and interpreted with care.

Table 1 Results from finite sample simulation experiment with FIC using the two focus parameters µ1 = S(t = 1|x = 0.5)

and µ2 = β. The M̂SE(µ̂) refers to the empirical MSE of µ̂, and ‘mean(FIC) [sd]’ refers to the empirical mean and standard
deviation (in brackets) of the FIC scores, all computed over all simulations.

n = 100 n=300 n=600

M̂SE(µ̂) mean(FIC) [sd] M̂SE(µ̂) mean(FIC) [sd] M̂SE(µ̂) mean(FIC) [sd]

µ1

Cox 0.002150 0.002134 [0.000393] 0.000709 0.000705 [0.000075] 0.000349 0.000351 [0.000026]
exp 0.001246 0.001520 [0.001196] 0.000568 0.000591 [0.000513] 0.000371 0.000391 [0.000330]

Weibull 0.001383 0.001685 [0.001034] 0.000446 0.000553 [0.000301] 0.000234 0.000276 [0.000139]

µ2

Cox 0.1749 0.2140 [0.1853] 0.0565 0.0590 [0.0298] 0.0273 0.0280 [0.0096]
exp 0.1363 0.1207 [0.0909] 0.0536 0.0450 [0.0219] 0.0299 0.0274 [0.0107]

Weibull 0.1730 0.2058 [0.1701] 0.0552 0.0583 [0.0287] 0.0270 0.0279 [0.0096]

6 Application: Survival with oropharynx carcinoma

We illustrate the practical use of our criteria by applying them to a real data set with survival with
oropharynx carcinoma. These data are discussed and analysed with different models and methods Aalen
and Gjessing (2001); Kalbfleisch and Prentice (2002, p. 378); Claeskens and Hjort (2008, Ch. 3.4). There
are n = 192 individuals, and we shall restrict ourselves to the following two covariates: X1, the so-called
condition (1 for no disability, 2 for restricted work, 3 for requiring assistance with self-care, and 4 for
confined to bed), and X2, the T-stage (an index of size and infiltration of tumour, ranging from 1, a small
tumour, to 4, a massive invasive tumour). Following the analysis in the above references, we include these
variables in the models in the scale which they were provided.

We compare the semiparametric Cox model with four parametric versions: From the simplest constant
hazard model αpm,1(s; θ) = θ, to

αpm,2(s; θ) = θ2(θ1s)
θ2−1θ1, αpm,3(s; θ) = θ1 exp(θ2s), αpm,4(s; θ) = θ1 gam(s; θ2, θ3).

The second and third are the Weibull and Gompertz models for hazard rates, whereas the fourth is a
three-parameter model with a multiplicative parameter times the gamma density gam(s; θ2, θ3). We shall

not list all the various parameter estimates here, but note that β̂cox = (0.89, 0.28)t. It is then a question
of whether the variability caused by estimating extra θ parameters from data, combined with a perhaps
small modelling bias, makes any of the parametric models better than the semiparametric Cox model.
The FIC provides answers to such questions.

6.1 Survival probabilities without covariates

In the spirit of Miller (1983) and Meier et al. (2004) we first look at the data ignoring the covariates. The
top panel of Figure 5 displays the survival probability curve for the four parametric models in addition
to the nonparametric Kaplan–Meier estimator, while the bottom panel shows the root of the FIC scores
corresponding to each time point. The bottom colour bar indicates which model has the smallest FIC score
for each time point. As the figure indicates, each model wins in some time interval, with the parametric
gamma density option being deemed the best most of the time. As expected, the Kaplan–Meier estimator
does a fairly good job overall, but at most time points there is a better parametric option available.
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Fig. 5 Estimates of survival probabilities for a range of time points and corresponding root-FIC scores for each model
fitted to the oropharynx carcinoma survival data. The bottom colour bar shows which model is deemed best by the FIC,
i.e. has smallest estimated risk.

6.2 Various focus parameters with covariates

We now include the two covariates and compare estimators from the five different models for each of four
selected focus parameters: µ1 = β1; µ2 = β2: µ3 = S(5 months |x1) − S(5 months |x2), with x1 = (1, 1)t

and x2 = (4, 4)t; and µ4 = median(T
(0)
i |x = (3, 3)t). The µ3 corresponds to the difference in the survival

probability after five months for individuals with respectively the ‘worst’ and ‘mildest’ conditions and
T-stage indices, and µ4 is the median life time for an individual with the second worst condition and
T-stage index. Figure 6 shows ‘FIC plots’ for the four different focus parameters, with the root of the FIC
score, plotted against the five estimates of the focus parameter in question. Thus, the best models are
furthest to the left in each plot. As the figure shows, different estimation tasks are, according to the FIC,
best handled by different models and estimators. For instance, the gamma-density model does rather
poorly for the three first focus parameters, while it is the winner for the fourth. On the other hand, the
overall rather good Cox model, is significantly outperformed by three parametric models for the third
focus, and seems to underestimate the survival probability difference.
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Fig. 6 ‘FIC plots’ for the four focus parameters µ1, µ2, µ3, µ4 when applied to five competing models for the oropharynx
carcinoma survival data.
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6.3 Cumulative hazard over time

Finally, we turn to an application of the AFIC. We take the set of focus parameters to be the first
year survival probabilities for an individual with covariates X1 = 2 and X2 = 2, i.e. S(t |xt = (2, 2))
for t ∈ (0, 1). Deeming all probabilities equally important, we use a constant weight function i.e. uses
ω(u) = u. Table 2 summarises the AFIC application results, and shows that if one model should be used
to estimate the full set of these survival probabilities, one should use the gamma density model, being
deemed slightly better than the Cox model. The main reason for the success of the gamma density model

here, is the tiny estimated integrated squared bias (represented by its root, b̂ias
∗
), while achieving a

reduced integrated variance (represented by its root ŝd
∗
) compared to the Cox model. These results are

also in accordance with the visual impression from the top panel of Figure 5.

Table 2 Results from an AFIC application to the oropharynx carcinoma data with equal weight on all cumulative hazards
in the interval (0, 1) conditioned on covariates X1 = 2 and X2 = 2.

model dim b̂ias
∗

ŝd
∗ √

AFIC Rank
Cox ∞ 0 0.0456 0.0456 2
exp 1 0.0688 0.0435 0.0814 5

Weibull 2 0.0415 0.0437 0.0602 3
Gompertz 2 0.0584 0.0443 0.0733 4

gamma density 3 0.0009 0.0443 0.0443 1

7 Concluding remarks

A. Summary of the price of semiparametric Cox regression. Our efficiency checks in part 1 indicate that
there may be drastic gains relying on a parametric model compared to the ‘safer’ choice of the Cox
model. We found this behavior when estimating conditional cumulative hazards, survival probabilities
and quantiles, particularly for small and large time points. When estimation interest is solely in β, there
is however not much to gain from relying on parametrics, and one may as well rely on semiparametrics
to avoid introducing a bias.

B. Covariate selection and time dependent covariates. The methods developed in Section 4 aim at
comparing semiparametric with parametric proportional hazards regressions, with all the covariates on
board, say x1, . . . , xq. One might wish to complement these FIC methods with those dealing also with all
possible subsets of these q regressors. In the application given in Section 6, with five models and p = 2
covariates, this would amount to an extended machinery with 5 × 2p = 20 candidate models. This can
indeed be carried out, but developing all the required limit results, with even more least false parameters
and sandwich matrices, has proven beyond the scope of the present paper. The framework could also be
generalised by allowing the covariates to be time-dependent. This would further increase the complexities
of the variance and covariance formulae, and their estimators.

C. Non-random covariates. In this paper we have derived limit results when the covariates are con-
sidered random variables. An alternative, equally common and reasonable framework is to treat the
covariate values as fixed. In such a situation, both the semiparametric and parametric estimators remain
unchanged, along with the asymptotics for the semiparametrics. For the parametrics, however, the al-
ternative framework gives rise to a different least false parameter, for which the maximum likelihood
estimator γ̂ is aiming at. This new least false parameter γ0,n depends on the fixed covariates and is
defined as the minimiser of (13), but now with the empirical distribution of the covariates Cn, inserted
for C. This gives zero-mean Gaussian limits for

√
n(γ̂ − γ0,n), which by the reduced randomness has

a generally smaller variance. Under model conditions, however, the variances are identical. Thus, the
‘what price’ results and the behavioural results of the FIC formula are all unaffected by such a choice
of framework, while the general limit results and the FIC/AFIC formulae in Section 4 would turn out
somewhat different.

D. Local neighbourhood models. As mentioned in the introduction, Hjort and Claeskens (2006) has
constructed a somewhat different FIC apparatus, essentially restricted to covariate selection within the
Cox model. In addition to their different aim (performing covariate selection, as opposed to considering
fully parametric alternatives to the Cox model), their asymptotic machinery is different, involving the
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mathematics of local neighbourhood models (which we did not need). From our point of view, ‘what
price’ questions and appropriate FIC formulae are more generally and naturally answered and derived
without relying on a constructed local misspecification framework. See also Jullum and Hjort (2017) for
an asymptotic comparison of the two FIC approaches.

E. Bootstrapping. Instead of computing estimated variances and covariances with recipes from Ap-
pendix A, we may estimate them by bootstrapping from the ‘biggest’ Cox model, see e.g. Hjort (1985).

F. Model averaging. Rather than relying solely on the model with the best FIC score in the end,
one may use e.g. a weighted average µ̂∗ =

∑
M ŵ(M)µ̂M of all model based estimators µ̂M , as the final

estimator. In cases with small differences in the FIC scores, such an estimator would be less sensitive to
the exact ranking of the models, and would therefore give a more stable estimator than that based only
on the best ranked model. Within the FIC framework, a natural construction emerges by taking ŵ(M)
proportional to say exp(−λFICM ) and summing to one. Here λ is a tuning parameter, indicating the
degree of smoothing among the best models, with a large λ corresponding to only keeping the winner,
whereas λ = 0 means giving equal weight to all candidate models. For further material and discussion
of similarly inspired model average estimators, see Hjort and Claeskens (2003) or Claeskens and Hjort
(2008, Ch. 7).

Appendix

A Estimating variances and covariances

For FIC and AFIC applications we need not only the focus parameter estimators µ̂cox and µ̂pm themselves

(yielding also b̂ = µ̂pm − µ̂cox), but also (consistent) recipes for estimating the quantities vcox, vc, vpm,
making up the covariance matrix Σµ in (31). The main ingredient in Σµ is indeed Σ(s, t), with blocks as
in (27), consisting of the quantities

σ2(t), F (t), Jcox, J, K, ν(t), and G. (39)

In this appendix we provide explicit consistent estimators for these quantities, in addition to a simple
consistent estimation strategy for other quantities typically involved in Σµ.

The principle we essentially follow is to insert the empirical analogues of all unknown quantities.
This amounts firstly to estimating βtrue, β0, θ0, Atrue(·), by respectively β̂cox, β̂pm, θ̂, Âcox(·). Secondly,

r(k)(s;h(βtrue, β0)) is estimated by n−1R
(k)
n (s;h(β̂cox, β̂pm)) for k = 0, 1, 2, and h some simple continuous

function combining β and β0. For f some vector function involving unknown quantities, integrals of

the form
∫ t
0
fαtrue ds =

∫ t
0
f dAtrue are then estimated by

∫ t
0
f̂ dÂcox =

∑
Ti≤t f̂(Ti)Di/R

(0)
n (Ti; β̂cox).

Note also that integrals
∫ t
0
f(s)r(k)(s;h(βtrue, β0)) ds are estimated by n−1

∫ t
0
f̂(s)R

(k)
n (s;h(β̂cox, β̂pm)) ds,

which may be expressed as the sum

1

n

n∑
i=1

{∫ min(Ti,t)

0

f̂(s) ds

}
R

(k)
(i) (h(β̂cox, β̂pm)), (40)

whereR
(k)
(i) (h(·)) = R

(k)
(i) (0;h(·)) is equal to respectively exp{Xt

ih(·)}, Xi exp{Xt
ih(·)}, andXiX

t
i exp{Xt

ih(·)}
for k = 0, 1, 2. Thus, estimators of the form

∫ t
0
f(s)g(k)(s;β) ds may be expressed by

1

n

∑
Ti≤t

f̂(Ti)Di
R

(k)
n (Ti; β̂cox + β̂)

R
(0)
n (Ti; β̂cox)

− 1

n

n∑
i=1

{∫ min(Ti,t)

0

f̂(s)αpm(s; θ̂) ds

}
R

(k)
(i) (β̂pm + β̂), (41)

with β̂ inserted to estimate β. The f -function is sometimes partly estimated by a step-function, like
when f(s) is equal to either A(s)f1(s), σ2(min(s, t))f1(s) or F (s)f1(s) for some function f1. In such cases,

integrals like
∫ t
0
f(s)r(k)(s;h(β, β0)) ds are decomposed even further. To see this, assume f(s) = f0(s)f1(s)

is estimated by f̂(s) = f̂0(s)f̂1(s) where f̂0(s) is a step function of the form f̂0(s) =
∑n
j=1 stepj1{Tj≤s} =∑

j:Tj≤s stepj . Then (40) decomposes further into the ‘triangle sum’

1

n

n∑
i=1

∑
j:Tj<min(Ti,t)

stepj

{∫ min(Ti,t)

Tj

f̂1(s) ds

}
R

(k)
(i) (h(β̂cox, β̂pm)).
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As a consequence, also
∫ t
0
f(s)g(k)(s;β) ds decomposes further, such that the subtrahend in (41) equals

1

n

n∑
i=1

∑
j:Tj<min(Ti,t)

stepj

{∫ min(Ti,t)

Tj

f̂1(s)αpm(s; θ̂) ds

}
R

(k)
(i) (β̂pm + β̂).

Let us now turn to the actual estimation of the quantities in (39).
[1] First, consider σ2(t) as given in (9). The estimation strategy outlined above gives the estimator

σ̂2(t) =

∫ t

0

dÂcox(s)

n−1R
(0)
n (s; β̂cox)

=
∑
Ti≤t

nDi

{R(0)
n (Ti, β̂cox)}2

.

[2] Next consider F (t) as given in (9). Writing En(s;β) for R
(1)
n (s;β)/R

(0)
n (s;β), this function is

similarly estimated by

F̂ (t) =

∫ t

0

En(Ti; β̂cox) dÂcox(s) =
∑
Ti≤t

DiEn(Ti; β̂cox)

R
(0)
n (Ti; β̂cox)

,

[3] Consider now Jcox as given in (7). Following the plug-in procedure, we get

Ĵcox =
1

n

∑
Ti≤τ

{
R

(2)
n (Ti; β̂cox)

R
(0)
n (Ti; β̂cox)

− En(Ti; β̂cox)En(Ti; β̂cox)t

}
Di.

Alternatively, Jcox may be estimated by n−1 times the Hessian matrix of log-partial likelihood in (4).
[4] Consider J as given in (14) with blocks as in (16). Following the plug-in procedure, we estimate J

by Ĵ having blocks

Ĵ11 =
1

n

n∑
i=1

R
(0)
(i) (β̂pm)

∫ Ti

0

{ψ(s; θ̂)ψ(s; θ̂)t + ψd(s; θ̂)}αpm(s; θ̂) ds− 1

n

n∑
i=1

ψd(Ti; θ̂)Di

Ĵ12 = Ĵ t
21 =

1

n

n∑
i=1

∫ Ti

0

ψ(s; θ̂)αpm(s; θ̂) dsR
(1)
(i) (β̂pm)t =

1

n

n∑
i=1

Ad
pm(Ti; θ̂)R

(1)
(i) (β̂pm)t,

Ĵ22 =
1

n

n∑
i=1

R
(2)
(i) (β̂pm)

∫ Ti

0

αpm(s; θ̂) ds =
1

n

n∑
i=1

R
(2)
(i) (β̂pm)Apm(Ti; θ̂).

Similarly to Jcox, J may be estimated by n−1 times the Hessian of the parametric log-likelihood in (11).
[5] We continue with K as given in (14). The plug-in procedure applied to the formulae in (17), results

in K being estimated by K̂ having blocks

K̂11 =
1

n

n∑
i=1

[
ψ(Ti; θ̂)ψ(Ti; θ̂)

t − {Ad
pm(Ti; θ̂)ψ(Ti; θ̂)

t + ψ(Ti; θ̂)A
d
pm(Ti; θ̂)

t}R
(0)
n (Ti; β̂cox + β̂pm)

R
(0)
n (Ti; β̂cox)

]
Di

+
1

n

n∑
i=1

R
(0)
(i) (2β̂pm)

∫ Ti

0

[Ad
pm(s; θ̂)ψ(s; θ̂)t + ψ(s; θ̂)Ad

pm(s; θ̂)t]αpm(s; θ̂) ds,

K̂12 = K̂t
21 =

1

n

n∑
i=1

[
ψ(Ti; θ̂)En(Ti; β̂cox)t − {Ad

pm(Ti; θ̂) + ψ(Ti; θ̂)Apm(Ti; θ̂)}
R

(1)
n (Ti; β̂cox + β̂pm)t

R
(0)
n (Ti; β̂cox)

]
Di

+
1

n

n∑
i=1

[∫ Ti

0

{Ad
pm(s; θ̂) + ψ(s; θ̂)Apm(s; θ̂)}αpm(s; θ̂) ds

]
R

(1)
(i) (2β̂pm)t,

K̂22 =
1

n

n∑
i=1

R
(2)
n (Ti; β̂cox)− 2R

(2)
n (Ti; β̂cox + β̂pm)Apm(Ti; θ̂)

R
(0)
n (Ti; β̂cox)

Di

+
2

n

n∑
i=1

R
(2)
(i) (2β̂pm)

∫ Ti

0

αpm(s; θ̂)Apm(s; θ̂) ds.
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[6] We go on to the covariance ν(t) = Cov(W (t), U t) as given in (29). This covariance formula may
be estimated by

ν̂(t) =

(∑
Ti≤tDiψ(Ti; θ̂)/R

(0)
n (Ti; β̂cox)

F̂ (t)

)t

− 1

n

n∑
i=1

Diσ̂
2(min(Ti, t))

R
(0)
n (Ti; β̂cox)

(
R

(0)
n (Ti; 2β̂cox)ψ(Ti; θ̂)

R
(1)
n (Ti; 2β̂cox)

)t

+

n∑
i=1

∑
j:Tj<min(Ti,t)

Dj

R
(0)
n (Tj ; β̂cox)2

(
R

(0)
(i) (β̂pm + β̂cox){Ad

pm(Ti; θ̂)−Ad
pm(Tj ; θ̂)}

R
(1)
(i) (β̂pm + β̂cox){Apm(Ti; θ̂)−Apm(Tj ; θ̂)}

)t

.

[7] Finally, we estimate the covariance G = Cov(Ucox, U
t) as given in (28). We use

Ĝ = − 1

n

n∑
i=1

Di

R
(0)
n (Ti; β̂cox)

(
ψ(Ti; θ̂){Âcox(Ti)R

(1)
n (Ti; 2β̂cox)t −R(0)

n (Ti; 2β̂cox)F̂ (Ti)
t}

Âcox(Ti)R
(2)
n (Ti; 2β̂cox)−R(1)

n (Ti; 2β̂cox)F̂ (Ti)
t

)t

− 1

n

n∑
i=1

∑
j:Tj≤Ti

DjEn(Tj ; β̂cox)

R
(0)
n (Tj ; β̂cox)

(
R

(0)
(i) (β̂cox + β̂pm){Ad

pm(Ti; θ̂)−Ad
pm(Tj ; θ̂)}

R
(1)
(i) (β̂cox + β̂pm){Apm(Ti; θ̂)−Apm(Tj ; θ̂)}

)t

+
1

n

n∑
i=1

∑
j:Tj≤Ti

Dj

R
(0)
n (Tj ; β̂cox)

(
{Ad

pm(Ti; θ̂)−Ad
pm(Tj ; θ̂)}R(1)

(i) (β̂cox + β̂pm)t

{Apm(Ti; θ̂)−Apm(Tj ; θ̂)}R(2)
(i) (β̂cox + β̂pm)

)t

+

(
0p×q
Ĵcox

)t

.

Relying strictly on the plug-in principle has the beneficial property that all estimators are consistent.
This follows from the continuous mapping theorem since the precise formulae for the quantities in (39)
are all seen to be continuous in the quantities and functions (in their appropriate spaces) for which we
employ the plug-in principle.

To arrive at consistent estimators for vcox, vc and vpm for the classes of focus parameters we have
investigated, one typically needs consistent estimators also for the quantities: m′pm,m

′
cox, z

′
pm, z

′
cox, ζpm(·),

ζcox(·), Vt,pm(·), Vt,cox(·), hpm(φpm) and hcox(φcox), as described in Section 4.1. All except the last of these
are continuous when viewed as functions of the unknown quantities θ0, β0, βtrue and Atrue(·). These
are therefore estimated consistently by plugging in empirical analogues, like above. The last quantity
hcox(φcox) = αtrue(φcox) exp(xtβtrue), with φcox = A−1true(− log(1−u)/ exp(xtβtrue)) involved in estimation
of a quantile (see Section 3 in the supplementary material (XX, 2018)), is more delicate as we need the
estimator to be smooth or at least nonzero. The troublesome part is estimation of αtrue at the unknown
position φcox. This position is estimated by φ̂cox = Â−1cox(− log(1 − u)/ exp(xtβ̂cox)), while a smooth

estimate of αtrue is obtained e.g. via a kernel estimator α̂cox(t) =
∫
h−1K◦((t − s)/h) dÂcox(s) for some

suitable kernel K◦ and bandwidth h = hn, which then is evaluated in φ̂cox. As long as the bandwidth
has the property that hn → 0 and nhn → ∞, and αtrue is positive and two times differentiable in a
neighborhood of φcox, then this strategy also yields a consistent estimator. Thus, replacing the quantities
in the various forms of vcox, vc, vpm towards the end of Section 4.1, by the estimators presented in this
appendix, yields consistent estimators v̂cox, v̂c, v̂pm.

References

Aalen OO, Gjessing HK (2001) Understanding the shape of the hazard rate: a process point of view [with
discussion and a rejoinder]. Statistical Science 16:1–22

Aalen OO, Borgan Ø, Gjessing HK (2008) Survival and Event History Analysis: A Process Point of View.
Springer-Verlag, Berlin

Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical Models Based on Counting Processes.
Springer-Verlag, Berlin

Borgan Ø (1984) Maximum likelihood estimation in parametric counting process models, with applica-
tions to censored failure time data. Scandinavian Journal of Statistics 11:1–16

Breslow NE (1972) Contribution to the discussion of the paper by D.R. Cox. Journal of the Royal
Statistical Society Series B 34:216–217

Claeskens G, Hjort NL (2003) The focused information criterion [with discussion and a rejoinder]. Journal
of the American Statistical Association 98:900–916



What price semiparametric Cox regression? 23

Claeskens G, Hjort NL (2008) Model Selection and Model Averaging. Cambridge University Press, Cam-
bridge

Cox DR (1972) Regression models and life-tables [with discussion and a rejoinder]. Journal of the Royal
Statistical Society Series B 34:187–220

Efron B (1977) The efficiency of cox’s likelihood function for censored data. Journal of the American
Statistical Association 72:557–565

Hjort NL (1985) Bootstrapping Cox’s regression model. Tech. rep., Department of Statistics, University
of Stanford

Hjort NL (1990) Goodness of fit tests in models for life history data based on cumulative hazard rates.
Annals of Statistics 18:1221–1258

Hjort NL (1992) On inference in parametric survival data models. International Statistical Review 60:355–
387

Hjort NL (2008) Focused information criteria for the linear hazard regression model. In: Vonta F, Nikulin
M, Limnios N, Huber-Carol C (eds) Statistical Models and Methods for Biomedical and Technical
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