WHAT PRICE SEMIPARAMETRIC COX REGRESSION?

SUPPLEMENTARY MATERIAL

This is supplementary material to the paper Jullum and Hjort (2018) which below is referred to as
the main paper. The material has three sections. Section 1 contains proofs of Lemma 1 and Theorem
1 in the main paper. Section 2 contains detailed derivations leading to the precise formulae for the
variance and covariance quantities K, v(t) and G associated with Lemma 1 in the main paper. Section
3 provides explicit variance and covariance formulae related to Theorem 1 when the focus parameter is
the (conditional) life time quantile of the survival distribution. Numbering of equations, theorems and

lemmas refer to the main paper unless they are prefixed with an S.

1. PROOFS OF RESULTS FROM THE MAIN PAPER

Proof of Lemma 1. Andersen et al. (1993, Theorem VII.2.2 and Theorem VII.2.3) ensure that the
semiparametric part of (26) converges to Zeox(-) while Hjort (1992, Theorem 6.1) and an additional delta
method argument ensure that the parametric part of (26) converges to Zpm(-). In order to show that
there is joint convergence of these, we shall use bits and pieces of the proofs in these theorems to rewrite
the left hand side of (26). By the central limit theorem, a tightness argument, the delta method and
Slutsky’s theorem, we then show asymptotic equivalence with the right hand side.

From the proof of Andersen et al. (1993, Theorem VII.2.2 and Theorem VII.2.3) it follows that we
may write

Vi{Acox () = Atrue()} = Wi () = F()oou/nUn,cox + 0p(1),

- (S1)
\/ﬁ{ﬂcox - Btrue} - cofon cox + Op(l)
where 0, (1) denotes quantities converging (uniformly) in probability to zero, and
VAW (t) = Vi z / 7
n_lR 3 ﬁtrue)
(52)

\/ﬁﬁn,cox = \/ﬁﬁ ZA {Xz - En(sa 5true)}dMi(s)'
i=1

Further, from the proof of Hjort (1992, Theorem 6.1 (with details extended from Theorem 2.1)) we
learn that

6 — 6, 177
| = J°'T, 1),
\/ﬁ (ﬂpm - BO) * O;D( )

with /nU, = n~Y23""  Ui(7o) as described in (12). A delta method motivated Taylor expansion of
Apm(t;0) around 6y allows us to write

Jn <Apm(t§g) _AE;H(t;HO)> block( m(£:00)",Zy) I v/nU, + op,(1). (S3)

Thus, it remains to show that

\/E{W’ﬂ()? n,cox? Ut }t _> {W( ) cox7 Ut}t (84)

and that this limit process gives the desired covariance function.
To show that (S4) holds, we shall first show that the integrands in (S2) may be replaced by their limits
in probability, i.e. that /nW, (t) = n= /231 | W (t)+0,(1) and /0l cox = n~1/2 iU, ©) +o,(1),

1,COX
1
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where

t
0 dM;(s)
W (t)—/0 7O (5; Brrue)

Ui(,(;)ox = / {X’L - E(S; Btrue)} sz(S)
0
To prove that these hold, let f(-) be some real scalar function from the domain of

hn(s) = {nilezk) (5; Btrue)}k:(),l

and its limit ho(s) = {r(k)(s;ﬁtme)}k:o,h for s € [0,7], which also is continuous and bounded in a
neighbourhood around hg(s), uniformly in s. Consider n=4/2 3" | ["{ f(hn(s)) — f(ho(s))} dM;(s). This
is a martingale having variance equal to the expectation of

22 [ 6D~ ()Y ANG) < sup{ A (5) = Fho(s))) 5 3 V),

which is further bounded by the expectation of C,, = sup,{f(hn(s)) — f(ho(s))}?. Since f is continuous
in h,(s), the continuous mapping theorem and the uniform convergence of h,, in condition (A) ensure
that C,, —, 0. Since f(ho(s)) is bounded uniformly in s, the C,, is also bounded, and E C,, — 0. Thus,
n=V25" [T f(ha(s)) dM;(s) has the same limit as n=1/2 327" | [7 f(ho(s)) dM;(s). Now, since both
integrands in (S2) fulfil the conditions on the f-function above, we may rewrite /nW, (t) and \/nU,, cox
as described.

With this formulation, the left hand side of (S4) is just /n times the mean of i.i.d. processes plus
terms converging to zero in probability. To prove (S4), we need to demonstrate both finite-dimensional
convergence and tightness, cf. Billingsley (1968, Ch. 2). Finite-dimensional convergence follows from
the multidimensional central limit theorem, and tightness is secured since we already know by Andersen
et al. (1993, Theorem VII.2.3.) that /nW,(:) —4 W(-). Thus, there is joint convergence in (S4), and

the covariance function of this limit process is

Uox \ [ Ucox \ " u® v® \"
['(s,t) = Cov Wi(s) |, | W() = Cov Wié(s) , Wib(t)
u u Ui(0) Ui(70)
Jcox 0q><1 G
Otrg o(min(s,t)) v(s)| .
G* v(t)t K

with quantities given in the lemma and formulae which are proven in the supplementary material. Com-
bine now the non-o,-terms on the right hand side of (S1) and (S3) to a vector function of

\/E(Wn()’ U’It’L,COX’ U:’L)t

The continuous mapping theorem applied to this function then gives the desired limit distribution, which
by some algebraic efforts is seen to take the form of (26). Slutsky’s theorem takes care of the o,-terms
and completes the proof. [

Proof of Theorem 1. By Lemma 1, the limit results in (26) hold. Since T is Hadamard differentiable at
{Atrue ("), Btrue} and {A(+;60), Bo}, the functional which combines the two into a two-dimensional vector
with their individual mappings, has the same property. Application of the functional delta method (van
der Vaart, 2000, Theorem 20.8) then gives the convergence result. That this limit is Gaussian follows by
van der Vaart and Wellner (1996, Lemma 3.9.8) since Zcox and Z,, are both Gaussian. [ |

2. DETAILS ON EXPLICIT VARIANCE AND COVARIANCE FORMULAE
The goal of this section is to derive the precise formulae for K, v(t) and G, which are given by
K = Var(U) = Var(Ui(v0)) = E{Ui(70)Ui(70)"},
v(t) = Cov(W (1), U") = B{W (t)U*} = B{W " (t)U;(70)'},
G = COV(Ucoxu Ut) = E(UcoxUt) = E(Ui,coin(’VO)t)a



WHAT PRICE SEMIPARAMETRIC COX REGRESSION? 3

where
i) = [ (M58) iohatsnol 0 as-+ ).

1 dM;(s)
(0) / {s<t}@ M
W) = | S
! ( ) 0 T(O)( ; Btrue)

zcox / {X E Btrue)}dM( )

For working condltlons and detaﬂed exprebsions not repeated below, see Section 2 in the main paper.
Recall that M;(t) fo $)rue($|X;) ds is a martingale and that

Q(S, ’)/0|J)) = atrue(s) exp(wtﬁtrue) - apm(s; 90) eXp(xtﬁo).

With slight abuse of notation, omitting the dependence on 7y, write U;(yo) = Ui(l) + Ui(z) where

o= [ (M) vutsxas aa o = [C( ane. o

Recall also the form of the individual risk function RE?))(S; B) = Yi(s) exp(X}B), and its first and second
order 3 derivatives

R{})(s:8) = Yi(s) exp(X!A)X; and R0 (s; B) = Yi(s) exp(X{B) X; X,

which by our working conditions have expectations E{R( )( B)} = r*¥)(s; B). As in the main paper, we
also write

95 (5;8) = rue ()™ (8; Birne + B) — apm(s;00)r™) (s; Bo + ), for k=0,1,2,

for the expectation of Rgf)) (s; 8)q(s;v0]|X;). The following lemma will be helpful when deriving the precise
expressions for the variance and covariance terms.

Lemma S1. Let h(s,t; X;) be a function of s and t which is stochastically dependent only on X;.
Under our working conditions, we then have that

B{Yi(s)Yi(0)h(s, t; Xo)} = B{R() (max(s, £); furue) xp(= X[ furue) (s, 15 X)),
E{dM; ()Y (0)h(s. 1: X)) = ~B{R) (¢ fesue) (5. : X0) Yatrue ()L oy ds.
Proof. The former follows from the definition of Y; by noting that
Yi(s)Yi(t) = L salin>t = 1T >max(s,t)} = Y;(max(s,t)).
In proving the latter, note first that
E{dM;(s)Y;(¢t)h(s,t; X;)} = E[E{dM;(s)Y:(t)| X} h(s, t; X;)].

The inner expectation here may be written as the difference between E{dN;(s)Y;(¢)|X;} and
E{Y:(s5)Yi(t)|X;} exp(X} Birue) Xtrue(s) ds = E{RE?))(max(s, t); Berue) | Xi Fttrue($) ds. We also have that

E{dN;(s)Yi(0)[Xi} = E{dLl{1,<s D=1} (8) 11,543 | Xi} = E{dN;(5)|Xi} 115>y
= E{R(O)( ;/Btrue)|Xi}04true(5)1{szt} ds.

Thus, E{dM;(s)Yi(t)h(s, t; X;)} = fE{R(O)( 5 Birue) (5, £ Xi) Y true (8) 1 {s<py ds. n

Let us start out with K. Since E{Ui(l)} = E{Ui@)} =0, we may write

K =B (UM} + B[P 0P} + UM 0P + B O)). (S6)
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The second expectation in (S6) is the easiest. By exploiting martingale properties, we get

E{UP (UP)) = E{ /0 ' (w(igf())) (w(igf‘)))tn(s) exP( X Brrue) Htrue (5) ds}

- E{ /T (w(s;90)10(5;Go)tRE?))(S;ﬂtruc) (s; 90) ( ) ) X Qtrue(s) ds}
0

Rézl)) (8; ﬂtrue)w(‘ﬁ 90)‘5 R(ZZ ( S5 ﬁtrue)
_ T ¢(3;90)¢(3§90)tr(0)(8;5 rue) 1/1(8790)7"(1) (575 rue)t
B ~/0 < r(l) (87 Btrue)w(s; 90)tt ’r(2) (57 /Btrue; ) atruc(s) dS.

When dealing with the other terms it becomes notationally convenient to introduce

Q(s, 1 X;) = (w(iéf())) <¢(‘t);(i90)>t.

By the above lemma, the third expectation in (S6) may be written as

B{U™ (U4 / / E{Q(t, s; X;)q(t; Am\X) (t Birne) Qirue(8) L (acry } ds dt

__/0 /OE{Q(t,s;Xi)Q(t;70|Xi)R(?) (; Birue) Qtrue(5) } ds dt.

Since the fourth expectation in (S6) is just the transpose of the third and Q(¢,s; X;)* = Q(s,t; X;), we
also have

E{U(2)(U(1 / / E{Q S, t X) (t ’YQ|X) (4) (t 6true)04true( )}det

Now, the first expectation in (S6) may be written as

BOP OO = [ [ Bt Xa(es 0l Xt 20 X0 R (max(s, 1) )
x exp(—X{ Birue) } ds dt
T t
= [ [ Rt Xl X 20l X RE) 5 )
o Jo
x exp(— X} Birue) } ds dt
+/ / E{Q(S,f;Xi)(Z(S;70|Xi)Q(f;WO\Xi)RE?))(S;ﬁtrue)
o Jo
X exp(— X! Birue) } dt ds

/ / [{Q (5,45 X3) + Q(t, 51 X3) Y (15 70| X) R{3) (6 Brrue) erue (5)

[e% m(sae) eXp(thﬁU)
x (1 a Oétrl:ue(s) eXp(Xz‘tﬁtrue)> :| dsdt.

Thus, a part of the above expression cancels out all of the third and fourth expectation, leaving the sum
of the first, third and fourth expectation to

/ / {Qs.1:.X0) + QU1 5 XY yalt: 10| X0 B (1 Bty (5:00) ] dis
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Using the g(¥ )( ; B) notation, K’ is seen to have the following blocks:
Ky = [ [ 00000000500 +00300)005:80) Yo 03B (5:0)
0o Jo
- / { A5 (£ 00) (£ 00)" + (85 60) A, (8 00) 19 (8 o) it
’ T t
Kiy = (Ky)' = —/ / {(s:60) + 1b(t;00) Y™ (£ Bo) ctpm(s; 00) ds dt
= [ A 560) + 0(0380) A 1300} 1 0",

Ky = —2/ / gD (t; Bo)tpm (53 00) ds dt = —2/ gD (t; Bo) Apm (t; 60) dt
0o Jo 0
Finally, the full expression for K = E{Ui(Q)(UZ-(Q))t} + K’ consists of the following blocks

K= [ " [0 80)16(5: 60)10) (55 Burue) e ()
- {Agm(s;eo)l/}(s;@o) +1(s;60)A pm(s 00) 19\ (55 Bo)] ds
K12 = K£1 :/ [w(s;90)”"(1)(5;ﬂtrue)tatrue(s)
0
- {ASm(s; 00) + (53 00) Apm (53 00) g (53 Bo)'] ds
Ky = / {r®)(5; Birue) irue (5) — 29 (53 B0) Apm (55 60) } ds.

Let us then turn to v(t). From the representation in (S5), we may write

v(t) = EW O (UMY + Ew O ) {u 1.

The second expectation here is once again easy. Exploiting martingale properties gives

E[Wi(o) (t){Ui(2)}t] =E {/T & <w(§é90)>t Yl(s) eXp(X;ﬁtrue)atrue(S) dS}
0 i

r O)( 6truc)

R(O ( Btrue)qp(s 90)> i ©
) Qtrue r S35 Ptrue )5 ds
{/0 ( (’L) ( Btrue) ( )/ ( 6 )

- [ (B, = (B o)

By the above lemma, the first expectation in (S7) may be written as

EW O ({UDy] = { Il f;j”dgiue)(@f”)tmmq(um|Xi>dsdu}

mln tu 0) ’LL ﬁtruc)¢(u;90)>t Le(s)
/ / < ( (uvﬁtrue) ’I"(O) (S;ﬂtrue) dS dU
_ g (u;ﬂtrue)w(u;eo) ‘ .
= */0 < 9D (1 Borue) > o?(min(t,u)) du.

Thus, the final expression for v(t) becomes
t - t
fo S5 00 atruc( )dS) / (g(O) ('LL; ﬁtruc)¢(u; 00)) 2 :
- o“(min(t,u)) du.
0= (b o U g0 ) (mindf, )
Let us finally turn to G. From the representation in (S5), we may write

G =E{U° (W0} +E{U° (UP).

1,COX ?7,COX

)dsdu}

T pmin (¢,u) t
u; [ Olgryel S
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The second expectation here is once again easy as martingale properties give

E{Uz((zz)x(Uz(Q))t} =E {/OT{Xz - E(S; 5true)} (w(;f0)> Y;(S) eXp(XitBtrue)Oétrue(s) ds}

, ) (. . 0\ "
) / (5 90)(£R ( Btrue) (DR(l) (37 Btrue)E(Sa 6zrue) } % Oétrue(S), dS
0 R(z) ( Btrue) R(z) ( 53 6true)E(S; ﬂtrue)

= ’ 0p><q ’
N \/O (T(Q) (57 ﬁtrue)/r(o) (87 ﬁtrue) - E(S, 6true>E(S§ Btrue)t>
X T(O) (5; Btrue)atrue(s) ds

_ Opxq ‘
JCOX '

By the above lemma, the first expectation in (S8) may be written as

E{U) (UM} = E{ /OT /OT{XZ- — E(t; Birue) } AM; (1) (¢(§f0)>th(s)q(s;vo|Xi)ds}
_ _E{ /r /S{Xi — E(t; Birue) } (%b(iéfo))tRE?)>(3;ﬁtme)q(s;70 | Xi) X Qtorue(t) dt ds}

S 90 g(l ( ﬁtruc) _g ( Btruc) (t;ﬂtruc)t} ’
/ / < 9(2 ﬁtrue) (S ﬂtrue) (t Btrue)t > % atrue(t) dt ds
— 7/ < (3;00){Atrue(5)g(l)(5§Btrue) _g ( ﬁtrue) ( ) })tds
0 Atrue(s)g@)(s;ﬁtrue) g(l)(svﬁtrue) ()t

Thus, the final expression for G becomes

G = <Opxq>t - /‘r <w(3§90){Atrue(s)g(l)(3§Btrue)t - 9(0)(S§5‘crue)F(8)t})tds
Jeox 0 Atrue(s)g(z) (S§ 6true) - g(l) (5; /Btrue)F(s)t '

Hence, we have derived the expressions for all the desired quantities.

3. THE LIFE TIME QUANTILE AS A FOCUS PARAMETER

The u-quantile of the life time for an individual with covariate values corresponding to x is given by

= G = T(AC), Bitir) = A (S0 2 ) — 4 gt~ w) o) (59)

for some u € (0,1) where A(¢y ) is continuous. This focus parameter has semiparametric and fully
parametric estimators given by respectively figox = Azl (—log(1—u)|z) and i Hpm = A L(—log(1—u)|z),
i.e. the inverse of the estimators defined in (21), evaluated at — log(l u). These ebtlmators are consistent
for respectively pirne = Apue(—log(l — u)|z) and py = Ay (—log(l — u)|x), being inverses of the
quantities in (25). van der Vaart (2000, Lemma 21.3) states that if Vn{H,(-)— H()} =4 Z(-), for some
scalar function H, () with non-decreasing limit function H(-), one also has /n{H, ' (u) — H~1(u)} —4
—Z(HY(u))/h(H~*(u)), for any u in the range of H(-) — provided the derivative h of H exists and
is positive at H~!(u). Thus, finding the equivalent of (30) for the quantile focus parameter in (S9)
amounts ‘simply to inverting the equation in (33) Omitting the notational dependence on v and z,
let ¢eox = Atme( log(1 — u)|z) and ¢pm = Ag'(—log(l — u)|z). Recall from the main paper that
Ceox () = (exp(2* Brrue) s Avrue(+) exp(2* Borue)2*)* and Com (") = (exp(@*Bo), Apm (s 0o) exp(a* fo)at)*. Now,
since Age(s|x) and Ag(s|z) have derivatives heox(s) = atrue(s) exp(®Birue) and hpm(s) = apm(s; o)
exp(z*By), we have

\/,E (ﬂcox - Ntrue) i _ (ZA,cox(¢cox)/hcox(¢cox)> _ (Ccox(¢cox)tzcox((bcox)/hcox(¢cox)>
ﬁpm — Mo ZA,pm(¢pm)/hpm(¢pm) Cpm(¢pm)tzpm(¢pm)/hprn(¢pm) '

as long as Qrue(Peox) and apm(dpm; ) are positive, the latter for all § € N(6p). Consequently, for the
focus parameter in (S9), X, of (31) has elements veox, ve and vpm given by

Vcox = {Ccox(¢cox)t211(¢cox7 ¢COX)<COX(¢COX)}/{hCOX(¢COX)2}7
Ve = {Ccox(¢cox)t212(¢coxa d)pm)Cpm(¢pm)}/{hcox(¢cox)hprn(¢pm)}7 (810)
Upm = {Cpm(¢pm)t222(¢pmﬂ ¢pm)<pm(¢pm)}/{hpm(¢pm)2}-
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Remark S1. Under model conditions, where ¢cox = ¢pm = ¢u,x, then the ARE for the u-quantile
(conditioned on covariates given by z) takes the form

Vpm _ Coo(Gu0)* S22 (P, G o (Bu.o)

Vcox <cox(¢u,z)t211 (¢u,ra Qbu,z)Ccox((bu,x) ,
which is identical to the ARE for A(¢, ), i-e. for A(t|z) such that w =1 — S(¢|z). An analogue holds
without covariates.
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