
WHAT PRICE SEMIPARAMETRIC COX REGRESSION?

Supplementary Material

This is supplementary material to the paper Jullum and Hjort (2018) which below is referred to as

the main paper. The material has three sections. Section 1 contains proofs of Lemma 1 and Theorem

1 in the main paper. Section 2 contains detailed derivations leading to the precise formulae for the

variance and covariance quantities K, ν(t) and G associated with Lemma 1 in the main paper. Section

3 provides explicit variance and covariance formulae related to Theorem 1 when the focus parameter is

the (conditional) life time quantile of the survival distribution. Numbering of equations, theorems and

lemmas refer to the main paper unless they are prefixed with an S.

1. Proofs of results from the main paper

Proof of Lemma 1. Andersen et al. (1993, Theorem VII.2.2 and Theorem VII.2.3) ensure that the
semiparametric part of (26) converges to Zcox(·) while Hjort (1992, Theorem 6.1) and an additional delta
method argument ensure that the parametric part of (26) converges to Zpm(·). In order to show that
there is joint convergence of these, we shall use bits and pieces of the proofs in these theorems to rewrite
the left hand side of (26). By the central limit theorem, a tightness argument, the delta method and
Slutsky’s theorem, we then show asymptotic equivalence with the right hand side.

From the proof of Andersen et al. (1993, Theorem VII.2.2 and Theorem VII.2.3) it follows that we
may write

√
n{Âcox(·)−Atrue(·)} = Wn(·)− F (·)J−1cox

√
nUn,cox + op(1),

√
n{β̂cox − βtrue} = J−1cox

√
nUn,cox + op(1),

(S1)

where op(1) denotes quantities converging (uniformly) in probability to zero, and

√
nWn(t) =

√
n

1

n

n∑
i=1

∫ t

0

dMi(s)

n−1R
(0)
n (s;βtrue)

,

√
nUn,cox =

√
n

1

n

n∑
i=1

∫ τ

0

{Xi − En(s;βtrue)} dMi(s).

(S2)

Further, from the proof of Hjort (1992, Theorem 6.1 (with details extended from Theorem 2.1)) we
learn that

√
n

(
θ̂ − θ0

β̂pm − β0

)
= J−1Un + op(1),

with
√
nUn = n−1/2

∑n
i=1 Ui(γ0) as described in (12). A delta method motivated Taylor expansion of

Apm(t; θ̂) around θ0 allows us to write

√
n

(
Apm(t; θ̂)−Apm(t; θ0)

β̂pm − β0

)
= block(Ad

pm(t; θ0)t, Iq)J−1
√
nUn + op(1). (S3)

Thus, it remains to show that

√
n{Wn(·), U t

n,cox, U
t
n}t

d→ {W (·), U t
cox, U

t}t, (S4)

and that this limit process gives the desired covariance function.
To show that (S4) holds, we shall first show that the integrands in (S2) may be replaced by their limits

in probability, i.e. that
√
nWn(t) = n−1/2

∑n
i=1W

(0)
i (t)+op(1) and

√
nUn,cox = n−1/2

∑n
i=1 U

(0)
i,cox+op(1),

1
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where

W
(0)
i (t) =

∫ t

0

dMi(s)

r(0)(s;βtrue)
,

U
(0)
i,cox =

∫ τ

0

{Xi − E(s;βtrue)} dMi(s).

To prove that these hold, let f(·) be some real scalar function from the domain of

hn(s) = {n−1R(k)
n (s;βtrue)}k=0,1

and its limit h0(s) = {r(k)(s;βtrue)}k=0,1, for s ∈ [0, τ ], which also is continuous and bounded in a

neighbourhood around h0(s), uniformly in s. Consider n−1/2
∑n
i=1

∫ τ
0
{f(hn(s))−f(h0(s))}dMi(s). This

is a martingale having variance equal to the expectation of

1

n

n∑
i=1

∫ τ

0

{f(hn(s))− f(h0(s))}2 dNi(s) ≤ sup
s
{f(hn(s))− f(h0(s))}2 1

n

n∑
i=1

Ni(τ),

which is further bounded by the expectation of Cn = sups{f(hn(s))− f(h0(s))}2. Since f is continuous
in hn(s), the continuous mapping theorem and the uniform convergence of hn in condition (A) ensure
that Cn →p 0. Since f(h0(s)) is bounded uniformly in s, the Cn is also bounded, and ECn → 0. Thus,

n−1/2
∑n
i=1

∫ τ
0
f(hn(s)) dMi(s) has the same limit as n−1/2

∑n
i=1

∫ τ
0
f(h0(s)) dMi(s). Now, since both

integrands in (S2) fulfil the conditions on the f -function above, we may rewrite
√
nWn(t) and

√
nUn,cox

as described.
With this formulation, the left hand side of (S4) is just

√
n times the mean of i.i.d. processes plus

terms converging to zero in probability. To prove (S4), we need to demonstrate both finite-dimensional
convergence and tightness, cf. Billingsley (1968, Ch. 2). Finite-dimensional convergence follows from
the multidimensional central limit theorem, and tightness is secured since we already know by Andersen
et al. (1993, Theorem VII.2.3.) that

√
nWn(·) →d W (·). Thus, there is joint convergence in (S4), and

the covariance function of this limit process is

Γ(s, t) = Cov

 Ucox

W (s)
U

 ,

Ucox

W (t)
U

t = Cov


U

(0)
i,cox

W 0
i (s)

Ui(γ0)

 ,

U
(0)
i,cox

W 0
i (t)

Ui(γ0)

t


=

Jcox 0q×1 G
01×q σ2(min(s, t)) ν(s)
Gt ν(t)t K

 ,

with quantities given in the lemma and formulae which are proven in the supplementary material. Com-
bine now the non-op-terms on the right hand side of (S1) and (S3) to a vector function of

√
n(Wn(·), U t

n,cox, U
t
n)t.

The continuous mapping theorem applied to this function then gives the desired limit distribution, which
by some algebraic efforts is seen to take the form of (26). Slutsky’s theorem takes care of the op-terms
and completes the proof.

Proof of Theorem 1. By Lemma 1, the limit results in (26) hold. Since T is Hadamard differentiable at
{Atrue(·), βtrue} and {A(·; θ0), β0}, the functional which combines the two into a two-dimensional vector
with their individual mappings, has the same property. Application of the functional delta method (van
der Vaart, 2000, Theorem 20.8) then gives the convergence result. That this limit is Gaussian follows by
van der Vaart and Wellner (1996, Lemma 3.9.8) since Zcox and Zpm are both Gaussian.

2. Details on explicit variance and covariance formulae

The goal of this section is to derive the precise formulae for K, ν(t) and G, which are given by

K = Var(U) = Var(Ui(γ0)) = E{Ui(γ0)Ui(γ0)t},

ν(t) = Cov(W (t), U t) = E{W (t)U t} = E{W (0)
i (t)Ui(γ0)t},

G = Cov(Ucox, U
t) = E(UcoxU

t) = E(Ui,coxUi(γ0)t),
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where

Ui(γ0) =

∫ τ

0

(
ψ(s; θ0)
Xi

)
{Yi(s)q(s; γ0|Xi) ds+ dMi(s)} ,

W
(0)
i (t) =

∫ τ

0

1{s<t}dMi(s)

r(0)(s;βtrue)
,

U
(0)
i,cox =

∫ τ

0

{Xi − E(s;βtrue)}dMi(s).

For working conditions and detailed expressions not repeated below, see Section 2 in the main paper.

Recall that Mi(t) = Ni(t)−
∫ t
0
Yi(s)αtrue(s|Xi) ds is a martingale and that

q(s; γ0|x) = αtrue(s) exp(xtβtrue)− αpm(s; θ0) exp(xtβ0).

With slight abuse of notation, omitting the dependence on γ0, write Ui(γ0) = U
(1)
i + U

(2)
i where

U
(1)
i =

∫ τ

0

(
ψ(s; θ0)
Xi

)
Yi(s)q(s; γ0|Xi) ds and U

(2)
i =

∫ τ

0

(
ψ(s; θ0)
Xi

)
dMi(s). (S5)

Recall also the form of the individual risk function R
(0)
(i) (s;β) = Yi(s) exp(Xt

iβ), and its first and second

order β derivatives

R
(1)
(i) (s;β) = Yi(s) exp(Xt

iβ)Xi and R
(2)
(i) (s;β) = Yi(s) exp(Xt

iβ)XiX
t
i ,

which by our working conditions have expectations E{R(k)
(i) (s;β)} = r(k)(s;β). As in the main paper, we

also write

g(k)(s;β) = αtrue(s)r
(k)(s;βtrue + β)− αpm(s; θ0)r(k)(s;β0 + β), for k = 0, 1, 2,

for the expectation of R
(k)
(i) (s;β)q(s; γ0|Xi). The following lemma will be helpful when deriving the precise

expressions for the variance and covariance terms.

Lemma S1. Let h(s, t;Xi) be a function of s and t which is stochastically dependent only on Xi.
Under our working conditions, we then have that

E{Yi(s)Yi(t)h(s, t;Xi)} = E{R(0)
(i) (max(s, t);βtrue) exp(−Xt

iβtrue)h(s, t;Xi)},

E{dMi(s)Yi(t)h(s, t;Xi)} = −E{R(0)
(i) (t;βtrue)h(s, t;Xi)}αtrue(s)1{s<t} ds.

Proof. The former follows from the definition of Yi by noting that

Yi(s)Yi(t) = 1{Ti>s}1{Ti>t} = 1{Ti>max(s,t)} = Yi(max(s, t)).

In proving the latter, note first that

E{dMi(s)Yi(t)h(s, t;Xi)} = E[E{dMi(s)Yi(t)|Xi}h(s, t;Xi)].

The inner expectation here may be written as the difference between E{dNi(s)Yi(t)|Xi} and

E{Yi(s)Yi(t)|Xi} exp(Xt
iβtrue)αtrue(s) ds = E{R(0)

(i) (max(s, t);βtrue)|Xi}αtrue(s) ds. We also have that

E{dNi(s)Yi(t)|Xi} = E{d1{Ti≤s,Di=1}(s)1{Ti≥t}|Xi} = E{dNi(s)|Xi}1{s≥t}
= E{R(0)

(i) (s;βtrue)|Xi}αtrue(s)1{s≥t} ds.

Thus, E{dMi(s)Yi(t)h(s, t;Xi)} = −E{R(0)
(i) (t;βtrue)h(s, t;Xi)}αtrue(s)1{s<t} ds.

Let us start out with K. Since E{U (1)
i } = E{U (2)

i } = 0, we may write

K = E{U (1)
i (U

(1)
i )t}+ E{U (2)

i (U
(2)
i )t}+ E{U (1)

i (U
(2)
i )t}+ E{U (2)

i (U
(1)
i )t}. (S6)
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The second expectation in (S6) is the easiest. By exploiting martingale properties, we get

E{U (2)
i (U

(2)
i )t} = E

{∫ τ

0

(
ψ(s; θ0)
Xi

)(
ψ(s; θ0)
Xi

)t

Yi(s) exp(Xt
iβtrue)αtrue(s) ds

}

= E

{∫ τ

0

(
ψ(s; θ0)ψ(s; θ0)tR

(0)
(i) (s;βtrue) ψ(s; θ0)R

(1)
(i) (s;βtrue)

t

R
(1)
(i) (s;βtrue)ψ(s; θ0)t R

(2)
(i) (s;βtrue)

)
× αtrue(s) ds

}

=

∫ τ

0

(
ψ(s; θ0)ψ(s; θ0)tr(0)(s;βtrue) ψ(s; θ0)r(1)(s;βtrue)

t

r(1)(s;βtrue)ψ(s; θ0)t r(2)(s;βtrue)

)
αtrue(s) ds.

When dealing with the other terms it becomes notationally convenient to introduce

Q(s, t;Xi) =

(
ψ(s; θ0)
Xi

)(
ψ(t; θ0)
Xi

)t

.

By the above lemma, the third expectation in (S6) may be written as

E{U (1)
i (U

(2)
i )t} = −

∫ τ

0

∫ τ

0

E{Q(t, s;Xi)q(t; γ0|Xi)R
(0)
(i) (t;βtrue)αtrue(s)1{s<t}} dsdt

= −
∫ τ

0

∫ t

0

E{Q(t, s;Xi)q(t; γ0|Xi)R
(0)
(i) (t;βtrue)αtrue(s)} dsdt.

Since the fourth expectation in (S6) is just the transpose of the third and Q(t, s;Xi)
t = Q(s, t;Xi), we

also have

E{U (2)
i (U

(1)
i )t} = −

∫ τ

0

∫ t

0

E{Q(s, t;Xi)q(t; γ0|Xi)R
(0)
(i) (t;βtrue)αtrue(s)} dsdt.

Now, the first expectation in (S6) may be written as

E{U (1)
i (U

(1)
i )t} =

∫ τ

0

∫ τ

0

E{Q(s, t;Xi)q(s; γ0|Xi)q(t; γ0|Xi)R
(0)
(i) (max(s, t);βtrue)

× exp(−Xt
iβtrue)} dsdt

=

∫ τ

0

∫ t

0

E{Q(s, t;Xi)q(s; γ0|Xi)q(t; γ0|Xi)R
(0)
(i) (t;βtrue)

× exp(−Xt
iβtrue)} dsdt

+

∫ τ

0

∫ s

0

E{Q(s, t;Xi)q(s; γ0|Xi)q(t; γ0|Xi)R
(0)
(i) (s;βtrue)

× exp(−Xt
iβtrue)} dtds

=

∫ τ

0

∫ t

0

E

[
{Q(s, t;Xi) +Q(t, s;Xi)}q(t; γ0|Xi)R

(0)
(i) (t;βtrue)αtrue(s)

×
(

1− αpm(s; θ) exp(Xt
iβ0)

αtrue(s) exp(Xt
iβtrue)

)]
dsdt.

Thus, a part of the above expression cancels out all of the third and fourth expectation, leaving the sum
of the first, third and fourth expectation to

K ′ = −
∫ τ

0

∫ t

0

E
[
{Q(s, t;Xi) +Q(t, s;Xi)}q(t; γ0|Xi)R

(0)
(i) (t;β0)αpm(s; θ0)

]
dsdt.
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Using the g(k)(s;β) notation, K ′ is seen to have the following blocks:

K ′11 = −
∫ τ

0

∫ t

0

{ψ(s; θ0)ψ(t; θ0)t + ψ(t; θ0)ψ(s; θ0)t}g(0)(t;β0)αpm(s; θ) dsdt

= −
∫ τ

0

{Ad
pm(t; θ0)ψ(t; θ0)t + ψ(t; θ0)Ad

pm(t; θ0)t}g(0)(t;β0) dt,

K ′12 = (K ′21)t = −
∫ τ

0

∫ t

0

{ψ(s; θ0) + ψ(t; θ0)}g(1)(t;β0)tαpm(s; θ0) dsdt

= −
∫ τ

0

{Ad
pm(t; θ0) + ψ(t; θ0)Apm(t; θ0)}g(1)(t;β0)t dt,

K ′22 = −2

∫ τ

0

∫ t

0

g(2)(t;β0)αpm(s; θ0) dsdt = −2

∫ τ

0

g(2)(t;β0)Apm(t; θ0) dt.

Finally, the full expression for K = E{U (2)
i (U

(2)
i )t}+K ′ consists of the following blocks

K11 =

∫ τ

0

[ψ(s; θ0)ψ(s; θ0)tr(0)(s;βtrue)αtrue(s)

− {Ad
pm(s; θ0)ψ(s; θ0)t + ψ(s; θ0)Ad

pm(s; θ0)t}g(0)(s;β0)] ds,

K12 = Kt
21 =

∫ τ

0

[ψ(s; θ0)r(1)(s;βtrue)
tαtrue(s)

− {Ad
pm(s; θ0) + ψ(s; θ0)Apm(s; θ0)}g(1)(s;β0)t] ds,

K22 =

∫ τ

0

{r(2)(s;βtrue)αtrue(s)− 2g(2)(s;β0)Apm(s; θ0)}ds.

Let us then turn to ν(t). From the representation in (S5), we may write

ν(t) = E[W
(0)
i (t){U (1)

i }
t] + E[W

(0)
i (t){U (2)

i }
t]. (S7)

The second expectation here is once again easy. Exploiting martingale properties gives

E[W
(0)
i (t){U (2)

i }
t] = E

{∫ τ

0

1{s<t}

r(0)(s;βtrue)

(
ψ(s; θ0)
Xi

)t

Yi(s) exp(Xt
iβtrue)αtrue(s) ds

}

= E


∫ t

0

(
R

(0)
(i) (s;βtrue)ψ(s; θ0)

R
(1)
(i) (s;βtrue)

)t

αtrue(s)/r
(0)(s;βtrue),ds


=

∫ t

0

(
ψ(s; θ0)
E(s;βtrue)

)t

αtrue(s) ds =

(∫ t
0
ψ(s; θ0)αtrue(s) ds

F (t)

)t

.

By the above lemma, the first expectation in (S7) may be written as

E[W
(0)
i (t){U (1)

i }
t] = E

{∫ τ

0

∫ τ

0

1{s<t}dMi(s)

r(0)(s;βtrue)

(
ψ(u; θ0)
Xi

)t

Yi(u)q(u; γ0 |Xi) dsdu

}

= −E

{∫ τ

0

∫ min (t,u)

0

(
ψ(u; θ0)
Xi

)t

R
(0)
(i) (u;βtrue)q(u; γ0 |Xi)×

αtrue(s)

r(0)(s;βtrue)
dsdu

}

= −
∫ τ

0

∫ min (t,u)

0

(
g(0)(u;βtrue)ψ(u; θ0)

g(1)(u;βtrue)

)t
αtrue(s)

r(0)(s;βtrue)
dsdu

= −
∫ τ

0

(
g(0)(u;βtrue)ψ(u; θ0)

g(1)(u;βtrue)

)t

σ2(min(t, u)) du.

Thus, the final expression for ν(t) becomes

ν(t) =

(∫ t
0
ψ(s; θ0)αtrue(s) ds

F (t)

)t

−
∫ τ

0

(
g(0)(u;βtrue)ψ(u; θ0)

g(1)(u;βtrue)

)t

σ2(min(t, u)) du.

Let us finally turn to G. From the representation in (S5), we may write

G = E{U (0)
i,cox(U

(1)
i )t}+ E{U (0)

i,cox(U
(2)
i )t}. (S8)
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The second expectation here is once again easy as martingale properties give

E{U (0)
i,cox(U

(2)
i )t} = E

{∫ τ

0

{Xi − E(s;βtrue)}
(
ψ(s; θ0)
Xi

)t

Yi(s) exp(Xt
iβtrue)αtrue(s) ds

}

= E

{∫ τ

0

(
ψ(s; θ0){R(1)

(i) (s;βtrue)
t −R(0)

(i) (s;βtrue)E(s;βtrue)
t}

R
(2)
(i) (s;βtrue)−R(1)

(i) (s;βtrue)E(s;βtrue)
t

)t

× αtrue(s),ds

}

=

∫ τ

0

(
0p×q

r(2)(s;βtrue)/r
(0)(s;βtrue)− E(s;βtrue)E(s;βtrue)

t

)t

× r(0)(s;βtrue)αtrue(s) ds

=

(
0p×q
Jcox

)t

.

By the above lemma, the first expectation in (S8) may be written as

E{U (0)
i,cox(U

(1)
i )t} = E

{∫ τ

0

∫ τ

0

{Xi − E(t;βtrue)} dMi(t)

(
ψ(s; θ0)
Xi

)t

Yi(s)q(s; γ0 |Xi) ds

}
= −E

{∫ τ

0

∫ s

0

{Xi − E(t;βtrue)}
(
ψ(s; θ0)
Xi

)t

R
(0)
(i) (s;βtrue)q(s; γ0 |Xi)× αtrue(t) dtds

}
= −

∫ τ

0

∫ s

0

(
ψ(s; θ0){g(1)(s;βtrue)t − g(0)(s;βtrue)E(t;βtrue)

t}
g(2)(s;βtrue)− g(1)(s;βtrue)E(t;βtrue)

t

)t

× αtrue(t) dtds

= −
∫ τ

0

(
ψ(s; θ0){Atrue(s)g

(1)(s;βtrue)
t − g(0)(s;βtrue)F (s)t}

Atrue(s)g
(2)(s;βtrue)− g(1)(s;βtrue)F (s)t

)t

ds.

Thus, the final expression for G becomes

G =

(
0p×q
Jcox

)t

−
∫ τ

0

(
ψ(s; θ0){Atrue(s)g

(1)(s;βtrue)
t − g(0)(s;βtrue)F (s)t}

Atrue(s)g
(2)(s;βtrue)− g(1)(s;βtrue)F (s)t

)t

ds.

Hence, we have derived the expressions for all the desired quantities.

3. The life time quantile as a focus parameter

The u-quantile of the life time for an individual with covariate values corresponding to x is given by

µ = φu,x = T (A(·), β; t, x) = A−1
(
− log(1− u)

exp(xtβ)

)
= A−1(− log(1− u) |x), (S9)

for some u ∈ (0, 1) where A(φu,x) is continuous. This focus parameter has semiparametric and fully

parametric estimators given by respectively µ̂cox = Â−1cox(− log(1−u) |x) and µ̂pm = Â−1pm(− log(1−u) |x),
i.e. the inverse of the estimators defined in (21), evaluated at − log(1−u). These estimators are consistent
for respectively µtrue = A−1true(− log(1 − u) |x) and µ0 = A−10 (− log(1 − u) |x), being inverses of the
quantities in (25). van der Vaart (2000, Lemma 21.3) states that if

√
n{Hn(·)−H(·)} →d Z(·), for some

scalar function Hn(·) with non-decreasing limit function H(·), one also has
√
n{H−1n (u) −H−1(u)} →d

−Z(H−1(u))/h(H−1(u)), for any u in the range of H(·) – provided the derivative h of H exists and
is positive at H−1(u). Thus, finding the equivalent of (30) for the quantile focus parameter in (S9)
amounts ‘simply’ to inverting the equation in (33). Omitting the notational dependence on u and x,
let φcox = A−1true(− log(1 − u) |x) and φpm = A−10 (− log(1 − u) |x). Recall from the main paper that
ζcox(·) = (exp(xtβtrue), Atrue(·) exp(xtβtrue)x

t)t and ζpm(·) = (exp(xtβ0), Apm(·; θ0) exp(xtβ0)xt)t. Now,
since Atrue(s |x) and A0(s |x) have derivatives hcox(s) = αtrue(s) exp(xtβtrue) and hpm(s) = αpm(s; θ0)
exp(xtβ0), we have

√
n

(
µ̂cox − µtrue

µ̂pm − µ0

)
d→ −

(
ZA,cox(φcox)/hcox(φcox)
ZA,pm(φpm)/hpm(φpm)

)
= −

(
ζcox(φcox)tZcox(φcox)/hcox(φcox)
ζpm(φpm)tZpm(φpm)/hpm(φpm)

)
,

as long as αtrue(φcox) and αpm(φpm; θ) are positive, the latter for all θ ∈ N(θ0). Consequently, for the
focus parameter in (S9), Σµ of (31) has elements vcox, vc and vpm given by

vcox = {ζcox(φcox)tΣ11(φcox, φcox)ζcox(φcox)}/{hcox(φcox)2},
vc = {ζcox(φcox)tΣ12(φcox, φpm)ζpm(φpm)}/{hcox(φcox)hpm(φpm)},

vpm = {ζpm(φpm)tΣ22(φpm, φpm)ζpm(φpm)}/{hpm(φpm)2}.
(S10)
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Remark S1. Under model conditions, where φcox = φpm = φu,x, then the ARE for the u-quantile
(conditioned on covariates given by x) takes the form

vpm
vcox

=
ζcox(φu,x)tΣ22(φu,x, φu,x)ζcox(φu,x)

ζcox(φu,x)tΣ11(φu,x, φu,x)ζcox(φu,x)
,

which is identical to the ARE for A(φu,x), i.e. for A(t |x) such that u = 1− S(t |x). An analogue holds
without covariates.
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