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Abstract: In this paper the goal is to explain predictions from complexmachine learningmodels. Onemethod
that hasbecomeverypopular during the last fewyears is Shapley values. Theoriginal development of Shapley
values for prediction explanation relied on the assumption that the features being described were indepen-
dent. If the features in reality are dependent this may lead to incorrect explanations. Hence, there have re-
cently been attempts of appropriately modelling/estimating the dependence between the features. Although
the previously proposed methods clearly outperform the traditional approach assuming independence, they
have their weaknesses. In this paper we propose two new approaches for modelling the dependence between
the features. Both approaches are based on vine copulas, which are �exible tools for modelling multivariate
non-Gaussian distributions able to characterise a wide range of complex dependencies. The performance of
the proposed methods is evaluated on simulated data sets and a real data set. The experiments demonstrate
that the vine copula approaches give more accurate approximations to the true Shapley values than their
competitors.
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1 Introduction
In many applications complex machine learning models like Gradient Boosting Machines, Random Forest
and Deep Neural Networks are outperforming traditional regression models. It is often hard to understand
why themachine learningmodels perform sowell, and the last few years, a new line of research has emerged
focusing on interpreting the predictions from thesemodels. Existingwork on explaining complexmodelsmay
be divided into two main categories; global and local explanations. The former try to describe the model as
whole, in termsofwhichvariables/features in�uenced the generalmodel themost. Local explanations, on the
other hand, try to identify how the di�erent input variables/features in�uenced a speci�c prediction/output
from the model, and are often referred to as individual prediction explanation methods. Such explanations
are particularly useful for complex models which behave rather di�erent for di�erent feature combinations,
meaning that the global explanation is not representative for the local behavior.

In this paper, the focus is on local explanations. One method that has become very popular the last few
years is Shapley values [2, 23, 41, 42]. This method, which is based on concepts from cooperative game the-
ory, was originally invented for assigning payout to players depending on their contribution towards the total
payout [24]. When interpreting machine learning models, the model features are the players and the predic-
tion is the total payout, and the aim is to distribute the di�erence between the prediction and the average
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prediction between the features in an optimal way. It can be shown that Shapley values is the only additive
feature attribution method that adhers to certain important properties [23].

The original development of Shapley values for prediction explanation [23, 41, 42] relied on the assump-
tion that the model features are independent. [2] showed that if there is a high degree of dependence among
some or all the features, this may lead to severely inaccurate Shapley value estimates and incorrect expla-
nations. In the same paper, the authors deal with this problem, proposing three di�erent approaches appro-
priately modelling/estimating the dependence between the features; the Gaussian approach, the Gaussian
copula approach, and the empirical approach. Although all three methods clearly outperform the traditional
approach assuming independence, they have their weaknesses. The Gaussian approach assumes that fea-
tures are multivariate Gaussian distributed, while the Gaussian copula approach represents the marginal
distributions of the features with their empirical margins and model the dependence structure by a Gaus-
sian copula [18]. Hence, these approaches will work well if respectively the distribution or the dependence
structure of the features is Gaussian. The empirical approach is inspired by the kernel estimator. Like most
other non-parametric density estimation approaches, this method su�ers from the curse of dimensionality.
It would therefore require a large data set to be accurate in problems with many features.

In this paper, we propose two alternative approaches to estimate Shapley values. In both approaches, the
multivariate joint density function of the features is represented by a vine copula [18], but they di�er in the
way the Shapley contribution function is evaluated. A vine copula is amultivariate copula that is constructed
from a set of bivariate ones, so-called pair-copulas. All of these bivariate copulas may be selected completely
freely, meaning that vine copulas are able to characterise a wide range of complex dependencies. Hence, the
new approaches are expected to outperform the existing ones in cases where the feature distribution is far
from the Gaussian.

The main part of the methodology proposed in this paper may be used for many other applications than
computing Shapley values. Itmay e.g. be regarded as a contribution to the �eld of non-parametric conditional
density estimation. It should further be noted that not even a linear regressionmodel is easily interpretable if
the explanatory variables are dependent, see e.g. [13, 19]. Shapley values have been used for assessing global
feature importance in such models, by partitioning the R2 quantity among the features in a way that takes
the dependence into account [22, 29, 38].

The rest of the paper is organized as follows. We begin by explaining the fundamentals of the Shapley
value framework in an explanation setting in Section 2, while Section 3 reviews some of of the previously
proposed Shapley methods for prediction explanation. In Section 4 we introduce the two new methods for
computing Shapley values based on vine copulas. Section 5 presents various simulation studies that demon-
strate that our method works in a variety of settings, while Section 6 gives a real data example. Finally, in
Section 7, we conclude.

2 Shapley values

2.1 Shapley values in game theory

Suppose we are in a cooperative game setting with M players, j = 1, . . . ,M, trying to maximize a payo�. Let
M be the set of all players and S any subset ofM. Then the Shapley value [36] for the jth player is de�ned as

ϕj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!
M! (v(S ∪ {j}) − v(S)). (1)

Here, v(S) is the contribution function whichmaps subsets of players to real numbers representing the worth
or contribution of the group S and |S| is the number of players in subset S.

In the game theory sense, each player receives ϕj as their payout. From the formula, we see that this
payout is just a weighted sum of the player’s marginal contributions to each group S. Lloyd Shapley proved
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that distributing the total gains of the game in this way is ‘fair’ in the sense that it obeys certain important
axioms [36].

2.2 Shapley values for prediction explanation

In amachine learning setting, imagine a scenariowherewehaveM features, x = (x1, . . . , xM)andaunivariate
response y, and have �tted the model g(x) which is supposed to predict y. We now use this model to predict
the response for a test observation x* and want to know how the di�erent features x1, . . . , xM in�uenced the
prediction g(x*). The papers [23, 41, 42] suggest doing this with Shapley values where the predictive model
replaces the cooperative game and the features replace the players. The prediction g(x*) is decomposed as
follows:

g(x*) = ϕ0 +
M∑
j=1

ϕ*j ,

where ϕ0 = E[g(x)] and ϕ*j is the Shapley value for variable j for test observation x*. That is, the Shapley
values ϕ*1, . . . , ϕ*M explain the di�erence between the prediction g(x*) and the average prediction for the
observations used to �t the model.

To use (1), [23] de�nes the contribution function v(S) as the following expected prediction

v(S) = E[g(x)|xS = x*S]. (2)

Here, xS denotes the features in subset S and x*S is the subsetS of the feature vector x* thatwewant to explain.
Thus, v(S) denotes the expected prediction given that the features in subset S take the value x*S.

If the features are continuous, we can write the conditional expectation in (2) as

E[g(x)|xS = x*S] = E[g(xS̄, xS)|xS = x*S] =
∫
g(xS̄, x*S)f (xS̄|xS = x*S) dxS̄, (3)

where xS̄ is the vector of features not in S and f (xS̄|xS = x*S) is the conditional density of xS̄ given xS = x*S. To
compute Shapley values in practice, the conditional expectation in (3) needs to be approximated empirically.
Note that in the rest of the paper we use lower case x-s for both random variables and realizations to keep the
notation simple.

3 Estimating Shapley values

3.1 The independence approach

Since the conditional probability density is rarely known and di�cult to estimate, [23] replaces it with the
simple (unconditional) probability density

f (xS̄|xS = x*S) = f (xS̄). (4)

The integral is thus approximated by

E[g(x)|xS = x*S] ≈
∫
g(xS̄, x*S)f (xS̄) dxS̄, (5)

which is estimated by randomly drawing K times from the full training data set and calculating

vKerSHAP(S) = 1
K

K∑
k=1

g(xkS̄, x
*
S). (6)
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Here, xk
S̄
, k = 1, . . . , K are the samples from the training set and g(·) is the estimated predictionmodel. In the

Shapley literature, the approximation (5) is sometimes termed the interventional conditional expectation,
while (3) is denoted the observational conditional expectation. See e.g. [7] for more details.

Unfortunately, when the features are not independent, [2] demonstrates that naively replacing the con-
ditional probability function with the unconditional one leads to very inaccurate Shapley values.

3.2 The Gaussian copula method

In [2], one of the proposed methods for estimating f (xS̄|xS = x*S) without relying on the naive assumption of
independence is based on the Gaussian copula. A copula is a function that characterizes the dependence in
a random vector. By Sklar’s theorem, any joint distribution function F with marginal cdf’s F1, . . . , FM can be
written as

F(x) = C(F1(x1), . . . , FM(xM)),

where C is the copula function. Copulas are distribution functions with uniformmargins. The corresponding
density is denoted by c.

There are several parametric families for the copula function. The Gaussian copula is a special case. It is
derived by inverting the above display i.e.,

C(u) = F(F−1
1 (u1), . . . , F−1

M (uM)),

and taking F as a multivariate Gaussian distribution. This gives rise to a parametric model (parametrized
by a correlation matrix) that re�ects Gaussian dependence, but can be combined with arbitrary marginal
distributions.

To compute Shapley values, we �rst need an estimate of the marginal distributions and copula pa-
rameters. [2] proposed to approximate the marginals F1, . . . , FM by the corresponding empirical cdf s and
parametrize the copula by the empirical correlation matrix of corresponding normal scores. Together this
gives us an estimated model for the joint distribution

F̂(x) = Ĉ(F̂1(x1), . . . , F̂M(xM)).

The conditional expectation in (3) can now be approximated by simulating conditionally from the estimated
model. More precisely, let xk

S̄
, k = 1, . . . , K be simulated values of xS̄ given xS = x*S and compute

vKerSHAP(S) = 1
K

K∑
k=1

g(xkS̄, x
*
S). (7)

Conditional simulation from the Gaussian copula can be achieved in essentially the same way as for the
multivariate Gaussian distribution, see [2] for more details.

The Gaussian copulamodel is very �exible with regard to themarginal distributions, but quite restrictive
in the dependence structures it can capture. It can only represent radially symmetric dependence relation-
ships and does not allow for tail dependence (i.e., joint occurrence of extreme events has small probability).
We therefore wish to use more �exible copula models and we shall focus on vine copula models speci�cally
in what follows.

4 Extending the Shapley framework with vine copulas
A vine copula is a multivariate copula that is constructed from a set of bivariate ones, so-called pair-copulas.
All of these bivariate copulas may be selected completely freely as the resulting structure is guaranteed to be
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a valid copula. Hence, vine copulas are highly �exible, being able to characterise a wide range of complex
dependencies.

Vine copulas have become very popular over the last decade. The main idea was originally proposed by
[18] and further explored and discussed by [3, 4] and [21]. However, it was the paper [1], putting them in an in-
ferential context, that really spurred a surge in empirical applications of these constructions. In this paper we
use vine copulas to model the multivariate distributions involved in the Shapley framework. After a brief in-
troduction to vine copulas in Section 4.1, we introduce two newmethods for approximating the Shapely value
contributions based on these structures in Sections 4.2 and 4.3. Finally, computationally e�cient selection
of the D-vine order is discussed in Section 4.4.

4.1 Background on vine copulas

In a vine copula the multivariate copula density is decomposed into a product of pair-copula densities. This
decomposition is not unique. To organize all possible decompositions, the notion of regular vines (R-vines)
was introduced by [4], and described in more detail in e.g. [9] and [21]. It involves the speci�cation of a se-
quence of trees, each edge of which corresponds to a pair-copula. These pair-copulas constitute the building
blocks of the joint R-vine distribution.

In this paper we use a special case of R-vines called D-vines [20] where each tree is a path. The density
f (x1, . . . , xM) corresponding to a D-vine may be written as

f (x1, . . . , xM) =
M∏
j=1
fj(xj)× (8)

M−1∏
i=1

M−i∏
j=1
cj,j+i|j+1,...,j+i−1

(
F(xj|xj+1, . . . , xj+i−1), F(xj+i|xj+1, . . . , xj+i−1)

)
,

where index i identi�es the trees, and j runs over the edges in each tree. The inner product in the second line
of (8) is a product of M(M − 1)/2 bivariate copula densities, and is called a D-vine copula density. Note that
the arguments of the pair-copulas are conditional distributions in all trees except the �rst, where they are the
univariate margins. Figure 1 shows a 5-dimensional D-vine with 4 trees and 10 edges.

The density in (8) implies a speci�c order of conditioning. This order can be changed by a simple re-
labelling of the variables. For example, we can switch the roles of variables x1 and xM. Instead of pair-
copulas c1,2 and cM−1,M we will then get pair-copulas cM,2 and cM−1,1 in the �rst tree. Each permutation
of (1, 2, . . . ,M) therefore gives rise to a di�erent model. These permutations are called orders of the D-vine
and will play an important role later on.

The key to the construction in (8) is that all copulas involved in the decomposition are bivariate and can
belong to di�erent families. There are no restrictions regarding the copula types that can be combined; the
resulting structure is guaranteed to be valid. A further advantage with R-vine copulas is that the conditional
distributions F(x|v) constituting the pair-copula arguments can be evaluated using a recursive formula de-
rived in [18]:

F(x|v) =
∂Cxvj|v−j (F(x|v−j), F(vj|v−j))

∂F(vj|v−j)
. (9)

Here Cxvj|v−j is a bivariate copula, vj is an arbitrary component of v and v−j denotes the vector v excluding vj.
By construction, R-vines have the important characteristic that the copulas in question are always present in
the preceding trees of the structure, so that they are available without extra computations.

In their general form, vine copulas can represent all continuous multivariate distributions. However, to
keep them tractable for inference, it is usually assumed that the pair copulas

cj,j+i|j+1,...,j+i−1
(
F(xj|xj+1, . . . , xj+i−1), F(xj+i|xj+1, . . . , xj+i−1)

)
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1      2              3                4                5

12    23                 34               45

12             23             34              45

13|2                24|3             35|4

13|2                     24|3                 35|414|23                  25|34 

14|23                 25|34

15|234

T1

T2

T3

T4

Figure 1: A D-vine with 5 variables, 4 trees and 10 edges. Each edge may be may be associated with a pair-copula.

are independent of the conditioning variables xj+1, . . . , xj+i−1 except through the conditional marginal dis-
tributions. This leads to the so-called simpli�ed vine copulas. We will consider both parametric and non-
parametric models for the pair-copulas. More details about parametric and non-parametric estimation can
be found in [1] and [24], respectively.

4.2 Shapley contributions: The conditional simulation method

Having determined the multivariate distribution of the explanatory variables, the next step is to compute the
contribution function v(S). We propose two di�erent methods for estimating v(S). In the �rst, to be described
in this section, we generate samples from an estimate of the conditional distribution f (xS̄|xS = x*S) and use
these samples to estimate v(S). In the second, which is treated in Section 4.3, v(S) is estimated using ratios of
copula densities.

To generate the samples from conditional distributions, we can use the Rosenblatt transform [31] and its
inverse. The Rosenblatt transform u = T(v) of a random vector v = (v1, . . . , vM) ∼ F is de�ned as

u1 = F(v1), v2 = F(v2|v1), . . . , uM = F(vM|v1, . . . , vM−1),

where F(vm|v1, . . . , vm−1) is the conditional distribution of vm given v1 . . . , vm−1,m = 2, . . . ,M. The vari-
ables u1, . . . uM are then independent standard uniform variables. The inverse operation

v1 = F−1(u1); v2 = F−1(u2|u1); . . . ; vM = F−1(uM|u1, . . . , uM−1),

canbeused to simulate fromadistribution. For any joint distribution F, if u is a vector of independent random
variables, v = T−1(u) has distribution F.

In what follows we outline the procedure for generating the kth sample from the conditional distribution
F(xS̄|xS = x*S):
1. For each j ∈ S, let u*j = F̂j(x*j ), where F̂j is the empirical distribution function of xj.
2. Let wS̄ be a vector with |S̄| elements with arbitrary values between 0 and 1. Set u = (wS̄, u*S) and let

v = T(u), where T(·) is the Roseblatt transform.
3. Generate the vector zS̄ by sampling |S̄| independent uniform U[0,1] distributed variates.
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4. Replace the |S̄| elements corresponding to the subset S̄ in v by zS̄.
5. Obtain u = T−1(v) using the inverse Rosenblatt transform T−1(·).
6. Finally, for each j ∈ S̄, let xj = F̂−1

j (uj), where F̂−1
j is the empirical quantile function of xj.

Step 2 ensures that the values of the conditioning variables are the same in all samples. Having generated K
samples x1

S̄
, . . . xK

S̄
from the conditional distribution f (xS̄|xS = x*S) we use (7) to compute vKerSHAP(S).

Whether or not we can compute T−1(·) easily for a given D-vine depends on its implied sampling orders
[10]. In particular, the conditioning variables have to appear either �rst or last in the D-vine structure. For
example, a D-vine with order 1− 2− 3− 4 allows to easily simulate S̄ = {3, 4} given S = {1, 2} and S̄ = {1, 2}
given S = {3, 4}, but simulating S̄ = {2, 3} given S = {1, 4} is only possible through expensive multivariate
numerical integration.

More formally, assume that we have a certain permutation π = (π1, . . . πM) of (1, . . . ,M). The corre-
sponding D-vine may then be used to generate samples from conditional distributions f (xS̄|xS = x*S) where
S either is of the form S = {π1, . . . , πk} or S = {πM , . . . , πM−k+1} for k = 1, . . . ,M. In Section 4.4, we use this
fact to search for a small set of models that allows for simulation conditionally on any viable coalition S.

4.3 Shapley contributions: The ratio method

For vine copula models, conditional simulation often involves numerical integration or inversion, which sig-
ni�cantly slows down the algorithms. [25] proposed an alternative way to approximate conditional expecta-
tions based on copulas. The idea is to weight every sample in (7) in a way that accounts for the dependence.

It turns out that the appropriate weights are given by a ratio of copula densities. For simplicity denote
uj = F(xj), j = 1, . . . ,M. If we have continuous variables, we can compute

v(S) = E[g(xS̄, xS)|xS = x*S] =
∫
g(xS̄, x*S)f (xS̄|xS = x*S) dxS̄

=
∫
g(xS̄, x*S)f (xS̄, x*S)/f (x*S) dxS̄

=
∫
g(xS̄, x*S)

c(uS̄, u*S)∏M
j=1 f (xj)

c(u*
S

)∏j∈S f (xj)
dxS̄

=
∫
g(xS̄, x*S) c(uS̄, u*S)

c(u*
S

)
f (xS̄)
c(uS̄) dxS̄

= ExS̄
[
g(xS̄, x*S) c(uS̄, u*S)

c(uS̄)

]
/c(u*S)

= ExS̄
[
g(xS̄, x*S) c(uS̄, u*S)

c(uS̄)

]
/EuS̄

[
c(uS̄, u*S)
c(uS̄)

]
.

The expression in the third line follows from the de�nition of a copula given in Section 3.2, while the one in
the fourth line is obtained using

f (xS̄) = c(uS̄)
∏
j∈S

f (xj).

To approximate the last line, we can estimate a vine copulamodel ĉ and replace the expectations by a sample
average over a (possibly random) subset of the training data:

vKerSHAP(S) =
∑K

k=1 g(xS̄, x*S)ĉ(uk
S̄
, u*S)/ĉ(uk

S̄
)∑K

k=1 ĉ(uk
S̄
, u*

S
)/ĉ(uk

S̄
)

. (10)

We use the denominator in (10) instead of c(u*S) directly, since using the latter, for all subsets S, one needs the
marginal for the subset S in addition to the marginal for subset S̄. As will be discussed below and in Section
4.4, not all marginals are available in closed form for a given D-vine. Hence, we need to �t more than one
D-vine to be able to obtain all marginals in (10) in closed form. Using c(u*S) would mean that we had to use
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even more di�erent D-vines. Similar expressions for discrete or mixed data and theoretical guarantees for
(10) can be found in [25]. Note that the formula in (10) is very similar to the one for the empirical method in
[2]. However, while the weights in that paper were computed using a Gaussian kernel, they are here given as
ratios of copula densities.

The joint vine copula density ĉ(uS̄, u*S) is easily computed from (8) irrespective of the D-vine order. How-
ever, only some of the marginals ĉ(uS̄) are available in closed form for a given D-vine. For example, a D-vine
with order1−2−3−4 allows to easily compute themarginals c1,2, c2,3, c3,4, c1,2,3 and c2,3,4, but not any other
marginals. To formalize this, we again identify the D-vine structure with a permutation π = (π1, . . . πM) of
(1, . . . ,M). From this permutation we may easily compute all marginals ĉ(uS̄) where S̄ = {πk , πk+1, . . . , π`}
for 1 ≤ k ≤ ` ≤ M.

4.4 Choice of D-vine structures

WecanuseD-vine copulamodels inboth the conditional simulationmethodand the ratiomethod.Depending
on our choice ofmethod,weneed to either simulate conditionally froman estimatedmodel or compute a ratio
of copula densities. How e�ciently we can do this numerically depends on the interplay of the coalition S

and the order of variables in the D-vine. Generally, there areM!/2 distinct D-vines when we haveM variables.
Usually, when using vines, one looks for the D-vine maximising dependence in the �rst trees. The nature of
the problem treated in this paper is a bit di�erent from the ones previously discussed in the literature.

Let Z be the set of all conditional distributions f (xS̄|xS = x*S) to be used in the conditional simulation
method, or all copula marginals ĉ(uS̄) to be computed in the ratio method. In the previous two sections, we
identi�ed the conditional distributions or copulamarginals that may be easily obtained for a given D-vine. In
this section we propose a randomized search method that minimizes computational complexity by �nding a
small set of D-vine models that covers Z. The procedure is as follows:
1. Generate B random permutations of (1, . . . ,M).
2. For eachpermutation, �nd thenumber of conditional distributionsor copulamarginals thatmaybe easily

obtained (see Sections 4.2 and 4.3).
3. Pick the permutation that covers most of the remaining sets in Z. Remove the covered sets from Z.
4. Go back to step 1 until no subsets are remaining.
The result is a collectionD-vine structures based onwhich all conditional distributions/copulamarginalsmay
be easily computed. We have used B = 100 permutations, which gave fairly stable results in our experiments
with 10 features. Note that the permutation the algorithm picks for any given margin is somewhat arbitrary.
Since each coalition only contributes a small part to the �nal Shapley value, an additional step to �nd the
optimal permutation is unlikely to be worth the e�ort. Empirically, this approach reduces the number of D-
vine models to estimate from 2M to around 2M−2 for conditional simulation and to 2M−3 for the ratio method.
That is, the computational time is reduced by 75% – 87.5%.

5 Simulation studies
In this section, we discuss a simulation study designed to compare di�erent ways to estimate Shapley values.
Speci�cally, we compare our suggested approaches with [23]’s independence estimation approach (below
called independence) and [2]’s empirical, Gaussian and Gaussian copula estimation approaches. A short de-
scription of each approach is given in Table 1. For the approaches presented in this paper, we have �tted
both a non-parametric and a parametric vine. The independence, empirical, Gaussian and Gaussian copula
approaches are all implemented in the R package shapr [35], and the plan is to also include the approaches
proposed in this paper. In the empirical method we used the default value 0.1 for kernel bandwidth.
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The simulation model is detailed in Section 5.1 and the actual design of the experiments is given in Sec-
tion 5.2. Further, Section 5.3 describes the evaluation measure used to quantify the accuracy of the di�erent
methods, and �nally, Section 5.4 gives the results.

Table 1: A short description of the approaches used to estimate (2) in the simulation studies.

Method Citation Description

Independence [23] Assume the features are independent. Estimate (2) by (6) where
xk
S̄
are sub-samples from the training data set.

Empirical [2] Calculate theMahalanobis distance between the observation be-
ing explained and every training instance. Use this distance to
calculate a weight for each training instance. Approximate (2) us-
ing a function of these weights.

Gaussian [2] Assume the features are jointly Gaussian. Sample N times from
the corresponding conditional distribution. Estimate (2) with (7)
using this sample.

Gaussian copula [2] Assume the dependence structure of the features can be approx-
imated by a Gaussian copula. Sample N times from the corre-
sponding conditional distribution. Estimate (2)with (7) using this
sample.

Parametric cond.
sim.

Assume the features are from a vine with all pair-copulas cho-
sen as Clayton Survival copulas. Sample N times from the corre-
sponding conditional distribution. Estimate (2)with (7) using this
sample.

Non-parametric
cond. sim.

Assume the features are from a non-parametric vine. Sample N
times from the corresponding conditional distribution. Estimate
(2) with (7) using this sample.

Parametric ratio Assume the features are from a vine with all pair-copulas chosen
as Clayton Survival copulas. Estimate (2) with (10).

Non-parametric ratio Assume the features are from a non-parametric vine. Estimate (2)
with (10).

5.1 Simulation model

To evaluate the di�erent approaches, we need cases for which we know the true feature distribution. More-
over, we have to usemultivariate distributions that have known conditional distributions. There are notmany
such distributions, but one example, which allows for heavy-tailed and skewedmarginals and non-linear de-
pendence, is the multivariate Burr distribution.

The M-dimensional Burr distribution has the density [40]

fM(x) = Γ(p + M)
Γ(p)

( M∏
m=1

bm rm

) ∏M
m=1x

bm−1
m(

1 +∑M
m=1 rm x

bm
m

)p+M ,

for xm > 0. Here, p, b1, . . . , bM and r1, . . . rM are the parameters of the distribution. The Burr distribution is
a compound Weibull distribution with the gamma distribution as compounder [40]. It can be regarded as a
special case of the Pareto IV distribution [44].

Any conditional distribution of the multivariate Burr distribution is also a multivariate Burr distribution
[40]. The conditional density f (x1, . . . , xS|xS+1 = x*S+1, . . . , xM = x*M) is an S-dimensional Burr density with
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parameters p̃, b̃1, . . . , b̃S, r̃1, . . . , r̃S, where p̃ = p + M − S and for all j = 1, . . . , S,

b̃j = bj , r̃j = rj
1 +∑M

m=S+1 rm
(
x*m
)bm .

According to [8], the copula corresponding to themultivariate Burr distribution is a Clayton survival cop-
ula. Thus, the multivariate Burr distribution may be represented by a vine copula where the pair-copulas are
bivariate Clayton survival copulas. For this reason, we have �tted both a parametric and a non-parametric
vine for the two approaches presented in this paper. The parametric vine is a simpli�ed vine with bivariate
Clayton survival copulas, while the non-parametric vine is �tted using the methodology in [24]. We use the
R package rvinecopulib [26] for parameter estimation. Note that the parametric vines are correctly speci-
�ed in this simulation example, meaning that if the non-parametric vines have similar performance to the
corresponding parametric vines, it indicates that the non-parametric vines provide a satisfactory �t to the
multivariate Burr distribution.

In our experiments, we simulate data from 3 di�erent 10-dimensional Burr distributions. All three distri-
butions have

b = (2, 4, 6, 2, 4, 6, 2, 4, 6, 6)
r = (1, 3, 5, 1, 3, 5, 1, 3, 5, 5),

while they have p equal to 0.5, 1, and 1.5, respectively. The three values of p correspond to pairwise Kendall’s
τ values of 0.5, 0.33, and 0.25, respectively.

In addition to the feature distribution, we need to specify the sampling model for the response y and
the machine learning approach used to �t the predictive model g(x). Inspired by [6] we chose the following
non-linear and heteroscedastic function for y:

y = u1 u2 exp(1.8 u3 u4) + u5 u6 exp(1.8 u7 u8) + u9 exp(1.8 u10) + 0.5(u1 + u5 + u9)ϵ, (11)

where um = Fm(xm). Further we assume that x is multivariate Burr distributed and that Fm(·) is the true
parametric distribution function. Finally, ϵ is standard normal distributed and independent of all the xms.

5.2 Experimental design

We perform 3 di�erent experiments with training sample sizes Ntrain equal to 100, 1000 and 10000, respec-
tively. In each experiment we repeat the following steps 50 times for each of the 3 di�erent Burr distributions
described in Section 5.1:
1. Generate simulated training data by

• Sampling Ntrain training observations from the chosen Burr distribution
• Computing the corresponding y values using (11).

2. Select the predictivemodel g(x) as a Random forest with 500 trees, and �t thismodel using the R package
ranger [43] (with default parameter settings) to the training data.

3. Sample Ntest = 100 test observations from the chosen Burr distribution.
4. For all methods, possible subsets S, and test observations x*:

• If one of the ratio methods: Compute vKerSHAP(S) using (10) with K = 1000.
• If the empirical method: Compute vKerSHAP(S) using the formula given in Section 3.3 in [2] with η =

0.95.
• If one of the remaining methods in Table 1: Generate K = 1000 samples from the estimated condi-

tional distribution p(xS̄|xS = x*S) and compute vKerSHAP(S) using (7).
5. For all test observations x* and all methods, compute the Shapley value using (1) with the vKerSHAP(S)

values for all subsets S for the current test observation.
For all approaches, the multivariate model for the features is �tted using the training data.
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5.3 Evaluation method

We measure the performance of each method based on the mean absolute error (MAE), across both the fea-
tures and the sample space. MAE is de�ned as

MAE(method q) = 1
T

T∑
i=1

1
M

M∑
j=1
|ϕj,true(xi) − ϕj,q(xi)|, (12)

where ϕj,q(x) and ϕj,true(x) denote, respectively, the Shapley value estimated with method q and the corre-
sponding true Shapley value for the prediction g(x). Further,M is the number of features and T is the number
of test observations. The true Shapley values are computed using the algorithm in Section 5.2, except that in
step 4, we generate K = 1000 samples from the true conditional Burr distribution p(xS̄|xS = x*S), and use
Monto Carlo integration with 10000 samples to compute v(S).

As stated in Section 5.2, for each feature distribution and choice of Ntrain we repeat the test procedure
50 times and report the average MAE over those 50 repetitions. Hence, the quality of the Shapley values is
evaluated based on a total of T = 5000 test observations. Sampling new data for each batch reduces the
in�uence of the exact shape of the �tted predictive model.

5.4 Results

The results of the simulation study are shown in Figure 2. The nine panels correspond to di�erent combi-
nations of sample size Ntrain (columns) and dependence parameter p (rows). Each bar represents the MAE
achieved by a particular method, where smaller values indicate higher accuracy.

Analogous to [2], we clearly see that the independence method is not suitable for estimating Shapley
values when covariates are dependent. The other methods have more similar performance, but with the
vine-based methods favoured overall. The parametric vine methods perform slightly better than the non-
parametric ones in all scenarios. This is to be expected, because, as previously stated, the true simulation
model can be represented as a vine copula with survival Clayton pair-copulas. Hence, the parametric mod-
els are correctly speci�ed. On real data sets, the parametric assumption will rarely hold and can be severely
violated, however.

For very small sample sizes (Ntrain = 100), even the (correctly speci�ed) parametric vine methods have
only a small advantage and the non-parametricmethods are outperformedby some of their competitorswhen
p = 1.5 (weaker dependence). This is not surprising, since we are estimating very complex models — up to
90 parameters for parametric vines — from very limited information. For medium to large samples (Ntrain ≥
1000), the vine-based methods outperform their competitors by a decent margin. When the dependence is
strong (p = 0.5), the MAE of the non-parametric ratio method is only approximately 20% of the MAE of the
best of the previously proposed methods for Ntrain = 10000 and the corresponding ratio for p = 1.5 is 50%.

It also becomes apparent that the non-parametric ratio method performs slightly better than its Monte
Carlo analogue. The likely reason is that conditional simulation involvesmany numerical approximations for
integration and inversion that accumulate. The two parametric vinemethods on the other handhave virtually
the same accuracy.

We can conclude that our vine-based methods improve over previous methods for estimating Shapley
values. However, that comes at a computational cost. Figure 3 shows the average computation time required
to estimate Shapley values for 100 test observations (including �tting copula models). We can con�rm that
the vine-based methods are slower than its competitors. The ratio methods are around 10x slower than the
Gaussian copula method, and the Monte Carlo methods even up to 100x. For practical purposes, the ratio
method is therefore preferred. We also note that computation times are generally large. This is mainly due
to the fact that we have to compute a large number of di�erent Shapley contributions v(S) (210 = 1, 024 for
10 covariates). This can be mitigated substantially by parallelizing computations and/or using the approxi-
mate weighted least squares method proposed by [23]. The latter approach, which is thoroughly described in
Section 2.3.1 in [2] requires only a subset of Shapley contributions to be computed.
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Figure 2:MAE for each combination of sample size, Burr distribution parameters and method. Each MAE-value is computed
from 5000 test observations. The values 0.5, 1, and 1.5 of p correspond to pairwise Kendall’s τs of 0.5, 0.33, and 0.25, respec-
tively.

6 Real data example
In this section, we apply the methods discussed in this paper on the Abalone data set (available at
http://archive.ics.uci.edu/ml/datasets/Abalone). It has previously been used in several machine learning
studies, see e.g. [33, 37]. Moreover, it has been used in the related vine copula studies [6, 11, 14]. The data
originate from a study by the Tasmanian Aquaculture and Fisheries Institute. An abalone is a kind of edible
sea snail, the harvest of which is subject to quotas. These quotas are based partly on the age distribution of
the abalones. To determine an abalone´s age, one cuts the shell through the cone, stains it, and counts the
number of rings through amicroscope. This is a highly time-consuming task. Hence, onewould like to predict
the age based on physical measurements that are easier to obtain. The Abalone data set was originally used
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Figure 3: Average computation time (CPU hours) required for each sample size, method, on 100 test observations.

for this purpose. It consists of 4,177 samples on the following 9 variables: Sex, Length, Diameter, Height,
Whole weight, Shucked weight, Viscera weight, Shell weight and Age measured by number of rings.

We do not include the variable Sex in our study since it is a discrete variable. Note that the use of regular
vines does not exclude discrete data; examples of discrete andmixed discrete vinesmay be found for instance
in [30] and [39]. However, many of the methods become more complicated when discrete data are involved.

Figure 4 shows the pairwise scatter plots, marginal density functions and pairwise Pearson correlation
coe�cients. There is clear non-linearity and heteroscedasticity among the pairs of variables. Moreover, it can
be noted that all pairwise correlations between the explanatory variables are higher than 0.775.

We treat the age prediction as a regression problem. To be able to detect any potential non-linear relation-
ships between the response and the explanatory variables, we use a Random forest model instead of linear
regression. The Abalone data set was divided into a training set and a test set, containing 4,077 and 100 ob-
servations, respectively. The Random forestmodel was �tted to the training data, using the R package ranger
with 500 trees and default parameter settings. Then, this model was used to predict the age (number of rings)
for the observations in the test data set.

Since the non-parametric ratio method was the fastest, most stable, and best performing of the new vine
copulamethods in the simulation study, we compare the performance of thismethodwith the independence,
empirical, Gaussian and Gaussian copula approaches. Figure 5 shows the Shapley values for two of the test
observations. As stated above, the Shapley values for a test observation explain the di�erence between the
prediction for this test observation and the prediction from a model without any explanatory variables. For
the Abalone data set the latter is 10 (number of rings), while the predicted values for test observations A and
B are 11.9 and 6.2, respectively. This is in correspondence with most Shapley values being positive for test
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Figure 4: Pairwise scatter plots, marginal density functions and pairwise correlation coe�cients for the explanatory variables
and the response variable.

observation A and all (except for those for Shucked weight and Length using the independence method)
being negative for test observation B.

Further, for observation A, all methods seem to agree with Shell weight being the most important vari-
able, while Shucked weight is the second most important. For test observation B, the variables Viscera
weight, Height and Diameter seem to be equally important according to the non-parametric ratio method.
This is also the case for the othermethods taking feature dependence into account. However, for this observa-
tion, the Shapley values obtained by the independence method are quite di�erent from those obtained using
the other methods. According to the independencemethod, the variables Shell weight, Whole weight and
Shucked weight are themost important.Moreover, the Shapley values for Shucked weight and Lengthhave
even opposite signs from those obtained by the other approaches, showing that using this method, one may
get misleading explanations.
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Althoughwe observe some di�erences, e.g. for the variables Shucked weight and Shell Weight for test
observation A, the Shapley values produced by the Gaussian copula method and the non-parametric ratio
method are quite similar. This is somewhat surprising, both in view of the results from the simulation study
(see Figure 2) and the conditional distribution example to be discussed below. We have not been able to
come up with a full explanation, but one theory is that the Gaussian copula methodmakes errors in opposite
directions which cancel each other out in the Shapley formula.

A problemwith evaluating Shapley values for real data is that there is no ground truth. Hence, we have to
justify the results in other ways. In what follows, we use mainly the same framework as that proposed in [2].
For all approaches treated in this paper, the Shapley value is a weighted sum of di�erences v(S ∪ {j}) − v(S)
for several subsets S. However, the approaches di�er in how v(S), or more speci�cally, the conditional distri-
bution p(xS̄|xS = x*S), is estimated. Hence, if we are able to show that the samples from the conditional dis-
tributions generated using the non-parametric method are more representative than the samples generated
using the previously proposedmethods, it is likely that the Shapley values obtained using the non-parametric
method are the most accurate.

Since there aremany conditional distributions involved in the Shapley formula,wewill not showall here.
However, we have included some examples that illustrate that the non-parametric method givesmore correct
approximations to the true conditional distributions than the other approaches. First, Figure 6 shows plots
of Length against Shell weight and Viscera weight against Shell weight. The grey dots are the train-
ing data. The blue dots are the samples from the conditional distribution of the variable at the x-axis given
that Shell weight is equal to 0.1, generated using our method. The green and red dots are the correspond-
ing samples generated using the Gaussian copula and independence approaches, respectively. It should be
noted that the non-parametric ratio method does not involve any simulation. However, the method has an
implicit statisticalmodel that we can sample from for illustrative purposes. (10) can be seen as an expectation
EP[g(xS̄, x*S)] with respect to a model P that assigns probability

π` =
ĉ(u`

S̄
, u*S)/ĉ(uk

S̄
)∑K

k=1 ĉ(uk
S̄
, u*

S
)/ĉ(uk

S̄
)

to the `th observation x`. Hence, we can simulate from this implicit model by drawing with replacement
from the original observations x1, . . . , xK using (π1, . . . , πK) as sampling probabilities. Both the Gaussian
copula approach and the independence approach generate samples that are unrealistic, in the sense that
they are far outside the range of what is observed in the training data. It might be confusing that this is the
case for the Gaussian copula. This is due to the fact that we are sampling in the lower tail, where there is
very strong tail dependence that the Gaussian copula is missing out on. It is well known that evaluation
of predictive machine learning models far from the domain at which they have been trained, can lead to
spurious predictions. Thus, it is important that the explanation methods are evaluating the predictive model
at appropriate feature combinations. The samples generated by the ratio method are inside the range of what
is observed in the training data.

In Figure 7 we study three di�erent conditional distributions involved in the Shapley formula:
• The conditional distribution of Shell weight given all the other variables.
• The conditional distribution of Length and Shucked weight given Viscera weight and Shell weight.
• The conditional distribution of all variables except Shucked weight given Shucked weight.
For all the three distributions, we generate 1000 samples for three of the test observations using the non-
parametric ratio, Gaussian copula and independence approaches. That is, we condition on four di�erent sets
of values. For each combination of test observation, conditional distribution and method, we compute the
mean Mahalanobis distance between each sample and its ten nearest training samples, resulting in 1000
di�erent mean distances. Each panel of Figure 7 shows the probability densities of such mean distances for
a speci�c test observation and a speci�c conditional distribution (test observations A and B are the same as
those in Figure 5). If the generated samples are realistic, we would expect the majority of the mean distances
to be small.

For all conditional distributions and all test observations, the mode of the density corresponding to the
independence approach is larger than those of the two other densities, indicating that the samples gener-
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Figure 5: Shapley values for two of the test observations in the real data set computed using the di�erent methods.

ated by the Gaussian copula and non-parametric ratio approaches are more realistic than those generated
by the independence approach. Further, for the majority of the test observations/conditional distributions,
the Mahalanobis distances corresponding to the non-parametric ratio approach are smaller than those cor-
responding to the independence and Gaussian copula approaches.
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Figure 6: Length against Shell weight (left) and Viscera weight against Shell weight (right). The grey dots are the train-
ing data. The blue dots are the samples from the conditional distribution of the variable at the x-axis given that Shell weight
is equal to 0.1 generated using the non-parametric ratio method, the green dots are the corresponding samples generated us-
ing the Gaussian copula method, and the red dots are the samples generated using the independence method. Note that the
red and green dots have been slightly displaced vertically to improve visibility of the �gure.

To summarize, we have illustrated that the Shapley values computed using the non-parametric ratio
method and the previously proposed methods are di�erent. We have tried to justify that this is because the
non-parametric ratio method gives more correct approximations to the true conditional distributions for this
data set.

7 Summary and discussion
Shapley values is amodel-agnosticmethod for explaining individual predictionswith a solid theoretical foun-
dation. The original development of Shapley values for prediction explanation relied on the assumption that
the features being describedwere independent. If the features in reality are dependent thismay lead to incor-
rect explanations. Hence, there have recently been attempts of appropriately modelling/estimating the de-
pendence between the features. Although the proposedmethods clearly outperform the traditional approach
assuming independence, they have their weaknesses. In this paper we have proposed two new approaches
for modelling the dependence between the features. Both approaches are based on vine copulas, which are
�exible tools for multivariate non-Gaussian distributions able to characterise a wide range of complex de-
pendencies.

We have performed a comprehensive simulation study, showing that our approaches outperform the pre-
viously proposedmethods.We have also applied the di�erent approaches to a real data set, where the predic-
tions to be explained were produced by a Random forest classi�er designed to predict the age of an abalone
(sea snail). In this case the true Shapley values are not known, but we provide results which indicate that the
vine-based approaches provide more sensible approximations than the previously proposed methods.

The main part of the methodology proposed in this paper may be used for many other applications than
computing Shapley values. The need for expressing statistical inference in terms of conditional quantities
is ubiquitous in most natural and social sciences [28]. An obvious example is the estimation of the mean
of some set of response variables conditioned on sets of explanatory variables taking speci�ed values [6].
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Figure 7: Probability densities of mean Mahalanobis distances for three di�erent conditional distributions and three di�erent
individuals. See the text for a further description.

Other common tasks are the forecasting of volatilities or quantiles of �nancial time series conditioned on
past history [34]. Problems of this kind often call for some sort of regression analysis, like the one presented
in this paper.

The challenging issue in conditional density estimation is to circumvent the curse of dimensionality.
Several methods have been proposed to estimate conditional densities; the classical kernel estimator [32],
which has been re�ned and developed in many directions, see for example [5, 15, 17, 27]; local polynomial
estimators [12, 16], and a local Gaussian correlation estimator [28]. However, most of these methods, if not
all, are computationally intractable when either xS or xS̄ is not univariate, or both have dimension above
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3-4. The suggested vine-based approaches work well when both xS or xS̄ are high dimensional. Hence,
the methodology proposed in this paper may be regarded as a contribution to the �eld of non-parametric
conditional density estimation.
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