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Summary

We want to explain individual predictions from
machine models by learning simple, interpretable
explanations.

•Shapley values is a game theoretic concept that
can be used for this purpose.

•The Shapley value framework has a series of
desirable theoretical properties, and can in
principle handle any predictive model.

•Kernel SHAP is a computationally efficient
approximation to Shapley values in higher
dimensions.

•Like several other existing methods, this
approach assumes that the features are
independent. Since Shapley values currently
suffer when features are correlated, the
explanations may be very misleading.

•We extend the Kernel SHAP method to
handle dependent features.

Introduction

The exact computation of Shapley values becomes in-
tractable for more than, say, ten features. This has
led to approximations like the Shapley Sampling Val-
ues [1] and Kernel SHAP [2]. The latter requires less
computational power to obtain a similar approxima-
tion accuracy. Hence, we focus on improving the
Kernel SHAP method to account for dependence.

In observational studies and machine learning prob-
lems, it is very rare that the features are statistically
independent, meaning that the Shapley valuemethods
suffers from inclusion of predictions based on unreal-
istic data instances when features are correlated. This
is the case even if a simple linear model is used.

Our approach is implemented in the R-
package shapr [3], which is available on
cran.r-project.org.

The Shapley values setting

A training set {yi, xi}i=1,...,ntrain of size ntrain has been
used to train a predictive model f (x) to resemble a
response value y. We want to explain the prediction
from the model f (x∗), for a specific feature vector
x = x∗. The prediction f (x∗) is decomposed as

f (x∗) = ϕ0 +
M∑

j=1
ϕ∗

j,

where ϕ0 = v(∅) and ϕ∗
j is the ϕj for the prediction

x = x∗. The Shapley values explain the difference
between the prediction and the global average predic-
tion. Here,

ϕj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!
M !

(v(S∪{j})−v(S)),

j = 1, . . . , M .

The key ingredient here is the contribution function
v(S) = E[f (x)|xS = x∗

S] for a certain subset S. This
function should resemble the value of f (x∗) when we
only know the value of the subset S of these features.

A brief overview of Kernel SHAP

The Kernel SHAP method [2] tries to estimate v(S)
in practical situations and consists of two parts:

1 A clever computationally tractable approximation
for computing the Shapley values – approximated
least squares

2 A simple Monte Carlo integration method for
estimating v(S) – assuming
p(xS̄|xS = x∗

S) ≈ p(xS̄) [independence!]

Linearity and independence is simple

We show that if the predictive model is a linear re-
gression model f (x) = β0 + ∑M

j=1 βj xj, where all
features xj, j = 1, . . . , M are independent, then the
Shapley values take the simple form: ϕ0 = β0 +∑M

j=1 βjE[xj] and ϕj = βj (x∗
j − E[xj]).

Our improvements of Kernel SHAP

We are concerned with the second part of Kernel
SHAP, and will try to estimate p(xS̄|xS = x∗

S) as
good as possible, accounting for dependence.
We propose four approaches for estimating
p(xS̄|xS = x∗

S);
1 assuming a Gaussian distribution for p(x),
2 assuming a Gaussian copula distribution for

p(x),
3 approximating p(xS̄|xS = x∗

S) by an empirical
(conditional) distribution,

4 a combination of the empirical approach and
either the Gaussian or the Gaussian copula
approach.

The empirical conditional approach is motivated by
the idea that samples (xS̄, xS) with xS close to x∗

S
are informative about the conditional distribution
p(xS̄|x∗

S).

Experiments to evaluate our methods

A problem with evaluating prediction explanation
methods is that there generally is no ground truth.
Hence, we turned to simulated data for which we may
compute the true Shapley values. For the non-linear
models, our methods clearly outperformed the Tree-
SHAP method [4], which tries to handle dependence
between features.

The empirical conditional approach was superior
when conditioning on a small number of the fea-
tures. It was outperformed by the Gaussian and
copula methods when conditioning on more fea-
tures.

An example from finance

The data set consists of 28 features extracted from 6
transaction time series. It has previously been used
for predictingmortgage default, and in the subsequent
illustration, we have used Shapley values to explain
two individuals’ probabilities of default.

Explanations for two individuals

Individual A: Probability of default = 0.492 Individual B: Probability of default = 0.196
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Shapley values for two persons in the real data set
computed using our method and the original Kernel
SHAP method. The Shapley values are quite differ-
ent, illustrating that in the presence of feaure depen-
dence, assuming independence can be misleading.
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